Suppr超能文献

从人多能干细胞中无饲养层生成并鉴定心内膜和心脏瓣膜细胞

Feeder-free generation and characterization of endocardial and cardiac valve cells from human pluripotent stem cells.

作者信息

Liu Clifford Z, Prasad Aditi, Jadhav Bharati, Liu Yu, Gu Mingxia, Sharp Andrew J, Gelb Bruce D

机构信息

Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

iScience. 2023 Nov 30;27(1):108599. doi: 10.1016/j.isci.2023.108599. eCollection 2024 Jan 19.

Abstract

Valvular heart disease presents a significant health burden, yet advancements in valve biology and therapeutics have been hindered by the lack of accessibility to human valve cells. In this study, we have developed a scalable and feeder-free method to differentiate human induced pluripotent stem cells (iPSCs) into endocardial cells, which are transcriptionally and phenotypically distinct from vascular endothelial cells. These endocardial cells can be challenged to undergo endothelial-to-mesenchymal transition (EndMT), after which two distinct populations emerge-one population undergoes EndMT to become valvular interstitial cells (VICs), while the other population reinforces their endothelial identity to become valvular endothelial cells (VECs). We then characterized these populations through bulk RNA-seq transcriptome analyses and compared our VIC and VEC populations to pseudobulk data generated from normal valve tissue of a 15-week-old human fetus. By increasing the accessibility to these cell populations, we aim to accelerate discoveries for cardiac valve biology and disease.

摘要

心脏瓣膜疾病带来了巨大的健康负担,然而,由于难以获取人类瓣膜细胞,瓣膜生物学和治疗学的进展受到了阻碍。在本研究中,我们开发了一种可扩展且无需饲养层的方法,将人类诱导多能干细胞(iPSC)分化为心内膜细胞,这些心内膜细胞在转录和表型上与血管内皮细胞不同。这些心内膜细胞可被诱导经历内皮-间充质转化(EndMT),之后会出现两个不同的群体——一个群体经历EndMT成为瓣膜间质细胞(VIC),而另一个群体强化其内皮特性成为瓣膜内皮细胞(VEC)。然后,我们通过大量RNA测序转录组分析对这些群体进行了表征,并将我们的VIC和VEC群体与从一名15周大人类胎儿的正常瓣膜组织生成的伪批量数据进行了比较。通过提高获取这些细胞群体的便利性,我们旨在加速心脏瓣膜生物学和疾病方面的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/491b/10758960/d9b73ac1389f/fx1.jpg

相似文献

1
Feeder-free generation and characterization of endocardial and cardiac valve cells from human pluripotent stem cells.
iScience. 2023 Nov 30;27(1):108599. doi: 10.1016/j.isci.2023.108599. eCollection 2024 Jan 19.
2
Valvular interstitial cells suppress calcification of valvular endothelial cells.
Atherosclerosis. 2015 Sep;242(1):251-260. doi: 10.1016/j.atherosclerosis.2015.07.008. Epub 2015 Jul 17.
3
Human and porcine aortic valve endothelial and interstitial cell isolation and characterization.
Front Cardiovasc Med. 2023 Jun 20;10:1151028. doi: 10.3389/fcvm.2023.1151028. eCollection 2023.
5
Culture and characterisation of canine mitral valve interstitial and endothelial cells.
Vet J. 2015 Apr;204(1):32-9. doi: 10.1016/j.tvjl.2015.01.011. Epub 2015 Jan 26.
6
Developmental Mechanisms of Aortic Valve Malformation and Disease.
Annu Rev Physiol. 2017 Feb 10;79:21-41. doi: 10.1146/annurev-physiol-022516-034001. Epub 2016 Dec 9.
7
Oxidative stress and valvular endothelial cells in aortic valve calcification.
Biomed Pharmacother. 2023 Jul;163:114775. doi: 10.1016/j.biopha.2023.114775. Epub 2023 Apr 26.
8
Valve Interstitial Cells Act in a Pericyte Manner Promoting Angiogensis and Invasion by Valve Endothelial Cells.
Ann Biomed Eng. 2016 Sep;44(9):2707-23. doi: 10.1007/s10439-016-1567-9. Epub 2016 Feb 23.
9
Directed Differentiation of Human Induced Pluripotent Stem Cells to Heart Valve Cells.
Circulation. 2024 Apr 30;149(18):1435-1456. doi: 10.1161/CIRCULATIONAHA.123.065143. Epub 2024 Feb 15.
10
Human iPSC-derived mesenchymal stem cells encapsulated in PEGDA hydrogels mature into valve interstitial-like cells.
Acta Biomater. 2018 Apr 15;71:235-246. doi: 10.1016/j.actbio.2018.02.025. Epub 2018 Mar 2.

引用本文的文献

1
Bioengineering Approaches to In Vitro Modeling of Genetic and Acquired Cardiac Diseases.
Curr Cardiol Rep. 2025 Mar 20;27(1):72. doi: 10.1007/s11886-025-02218-7.
2
Beyond genomic studies of congenital heart defects through systematic modelling and phenotyping.
Dis Model Mech. 2024 Nov 1;17(11). doi: 10.1242/dmm.050913. Epub 2024 Nov 22.
3
Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics.
Circ Res. 2024 Jun 7;134(12):1681-1702. doi: 10.1161/CIRCRESAHA.124.323672. Epub 2024 Jun 6.
5
Advances in 3D Bioprinted Cardiac Tissue Using Stem Cell-Derived Cardiomyocytes.
Stem Cells Transl Med. 2024 May 14;13(5):425-435. doi: 10.1093/stcltm/szae014.

本文引用的文献

1
APOE-NOTCH axis governs elastogenesis during human cardiac valve remodeling.
Nat Cardiovasc Res. 2024 Aug;3(8):933-950. doi: 10.1038/s44161-024-00510-3. Epub 2024 Jul 24.
2
Cell diversity and plasticity during atrioventricular heart valve EMTs.
Nat Commun. 2023 Sep 9;14(1):5567. doi: 10.1038/s41467-023-41279-6.
4
Endothelial Cell Insulin Signaling Regulates CXCR4 (C-X-C Motif Chemokine Receptor 4) and Limits Leukocyte Adhesion to Endothelium.
Arterioscler Thromb Vasc Biol. 2022 Jul;42(7):e217-e227. doi: 10.1161/ATVBAHA.122.317476. Epub 2022 Jun 2.
5
Analysing high-throughput sequencing data in Python with HTSeq 2.0.
Bioinformatics. 2022 May 13;38(10):2943-2945. doi: 10.1093/bioinformatics/btac166.
6
PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes.
Cell Stem Cell. 2022 Apr 7;29(4):559-576.e7. doi: 10.1016/j.stem.2022.02.011. Epub 2022 Mar 23.
7
Influence of feeder cells on transcriptomic analysis of pluripotent stem cells.
Cell Prolif. 2022 Feb;55(2):e13189. doi: 10.1111/cpr.13189. Epub 2022 Jan 21.
8
A library of induced pluripotent stem cells from clinically well-characterized, diverse healthy human individuals.
Stem Cell Reports. 2021 Dec 14;16(12):3036-3049. doi: 10.1016/j.stemcr.2021.10.005. Epub 2021 Nov 4.
10
Dual role for CXCL12 signaling in semilunar valve development.
Cell Rep. 2021 Aug 24;36(8):109610. doi: 10.1016/j.celrep.2021.109610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验