文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization.

作者信息

Popescu Roxana Cristina, Calin Bogdan Stefanita, Tanasa Eugenia, Vasile Eugeniu, Mihailescu Mona, Paun Irina Alexandra

机构信息

Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politehnica University from Bucharest, Bucharest, Romania.

Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering "Horia Hulubei", Magurele, Romania.

出版信息

Front Bioeng Biotechnol. 2023 Dec 19;11:1273277. doi: 10.3389/fbioe.2023.1273277. eCollection 2023.


DOI:10.3389/fbioe.2023.1273277
PMID:38170069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10758856/
Abstract

The manipulation of biological materials at cellular level constitutes a sine and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds ( < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/0bc3780628ca/fbioe-11-1273277-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/328d7cf60a16/fbioe-11-1273277-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/5e9b5c7ab9f1/fbioe-11-1273277-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/a3594e815c22/fbioe-11-1273277-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/a10a6bc2834c/fbioe-11-1273277-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/24a9d92cdf7c/fbioe-11-1273277-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/b793afa708b1/fbioe-11-1273277-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/8c0a5b25fb70/fbioe-11-1273277-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/6ff0b131fcf8/fbioe-11-1273277-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/b20f231d94c7/fbioe-11-1273277-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/3093d31c06ed/fbioe-11-1273277-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/2e667c6254dd/fbioe-11-1273277-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/344c493d1bc8/fbioe-11-1273277-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/ab06022fe11a/fbioe-11-1273277-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/53125617556c/fbioe-11-1273277-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/0bc3780628ca/fbioe-11-1273277-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/328d7cf60a16/fbioe-11-1273277-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/5e9b5c7ab9f1/fbioe-11-1273277-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/a3594e815c22/fbioe-11-1273277-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/a10a6bc2834c/fbioe-11-1273277-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/24a9d92cdf7c/fbioe-11-1273277-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/b793afa708b1/fbioe-11-1273277-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/8c0a5b25fb70/fbioe-11-1273277-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/6ff0b131fcf8/fbioe-11-1273277-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/b20f231d94c7/fbioe-11-1273277-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/3093d31c06ed/fbioe-11-1273277-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/2e667c6254dd/fbioe-11-1273277-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/344c493d1bc8/fbioe-11-1273277-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/ab06022fe11a/fbioe-11-1273277-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/53125617556c/fbioe-11-1273277-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0452/10758856/0bc3780628ca/fbioe-11-1273277-g015.jpg

相似文献

[1]
Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization.

Front Bioeng Biotechnol. 2023-12-19

[2]
Magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing.

Sci Rep. 2020-10-2

[3]
3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation.

Materials (Basel). 2019-9-3

[4]
3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis.

Int J Mol Sci. 2018-2-7

[5]
Collagen/Chitosan Functionalization of Complex 3D Structures Fabricated by Laser Direct Writing via Two-Photon Polymerization for Enhanced Osteogenesis.

Int J Mol Sci. 2020-9-3

[6]
A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication.

Int J Mol Sci. 2022-11-17

[7]
Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration.

Biofabrication. 2018-2-5

[8]
Laser Direct Writing of Dual-Scale 3D Structures for Cell Repelling at High Cellular Density.

Int J Mol Sci. 2022-3-17

[9]
Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.

Biomaterials. 2019-9-5

[10]
Two-photon polymerization for 3D biomedical scaffolds: Overview and updates.

Front Bioeng Biotechnol. 2022-8-22

本文引用的文献

[1]
In vitro hyperspectral biomarkers of human chondrosarcoma cells in nanoparticle-mediated radiosensitization using carbon ions.

Sci Rep. 2023-9-9

[2]
Beads for Cell Immobilization: Comparison of Alternative Additive Manufacturing Techniques.

Bioengineering (Basel). 2023-1-23

[3]
Nanoparticle-Mediated Drug Delivery of Doxorubicin Induces a Differentiated Clonogenic Inactivation in 3D Tumor Spheroids In Vitro.

Int J Mol Sci. 2023-1-22

[4]
A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication.

Int J Mol Sci. 2022-11-17

[5]
Porous scaffold for mesenchymal cell encapsulation and exosome-based therapy of ischemic diseases.

J Control Release. 2022-12

[6]
Influence of Polymer Shell Molecular Weight on Functionalized Iron Oxide Nanoparticles Morphology and In Vivo Biodistribution.

Pharmaceutics. 2022-9-5

[7]
Bioaffinity-based surface immobilization of antibodies to capture endothelial colony-forming cells.

PLoS One. 2022

[8]
Fabrication of high-strength, flexible, porous collagen-based scaffolds to promote tissue regeneration.

Mater Today Bio. 2022-8-5

[9]
Two-Photon Polymerization of 2.5D and 3D Microstructures Fostering a Ramified Resting Phenotype in Primary Microglia.

Front Bioeng Biotechnol. 2022-7-22

[10]
Cytoprotection of Human Progenitor and Stem Cells through Encapsulation in Alginate Templated, Dual Crosslinked Silk and Silk-Gelatin Composite Hydrogel Microbeads.

Adv Healthc Mater. 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索