Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania.
Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania.
Int J Mol Sci. 2022 Nov 17;23(22):14270. doi: 10.3390/ijms232214270.
In this review, we present the most recent and relevant research that has been done regarding the fabrication of 3D micro/nanostructures for tissue engineering applications. First, we make an overview of 3D micro/nanostructures that act as backbone constructs where the seeded cells can attach, proliferate and differentiate towards the formation of new tissue. Then, we describe the fabrication of 3D micro/nanostructures that are able to control the cellular processes leading to faster tissue regeneration, by actuation using topographical, mechanical, chemical, electric or magnetic stimuli. An in-depth analysis of the actuation of the 3D micro/nanostructures using each of the above-mentioned stimuli for controlling the behavior of the seeded cells is provided. For each type of stimulus, a particular recent application is presented and discussed, such as controlling the cell proliferation and avoiding the formation of a necrotic core (topographic stimulation), controlling the cell adhesion (nanostructuring), supporting the cell differentiation via nuclei deformation (mechanical stimulation), improving the osteogenesis (chemical and magnetic stimulation), controlled drug-delivery systems (electric stimulation) and fastening tissue formation (magnetic stimulation). The existing techniques used for the fabrication of such stimuli-actuated 3D micro/nanostructures, are briefly summarized. Special attention is dedicated to structures' fabrication using laser-assisted technologies. The performances of stimuli-actuated 3D micro/nanostructures fabricated by laser-direct writing via two-photon polymerization are particularly emphasized.
在这篇综述中,我们介绍了最近关于用于组织工程应用的 3D 微/纳米结构制造的相关研究。首先,我们概述了作为支架结构的 3D 微/纳米结构,种子细胞可以附着、增殖并分化为新组织。然后,我们描述了能够通过使用形貌、机械、化学、电或磁刺激来控制导致更快组织再生的细胞过程的 3D 微/纳米结构的制造。我们深入分析了使用上述每种刺激来控制种子细胞行为的 3D 微/纳米结构的致动。对于每种类型的刺激,我们都提出并讨论了一个特定的最新应用,例如控制细胞增殖和避免形成坏死核心(形貌刺激)、控制细胞黏附(纳米结构化)、通过核变形支持细胞分化(机械刺激)、改善成骨作用(化学和磁刺激)、控制药物输送系统(电刺激)和加快组织形成(磁刺激)。简要总结了用于制造这种刺激响应 3D 微/纳米结构的现有技术。特别关注使用激光辅助技术制造结构。特别强调了通过双光子聚合的激光直写制造的刺激响应 3D 微/纳米结构的性能。