Suppr超能文献

预测CAGI6中罕见变异对RNA剪接的影响。

Predicting the impact of rare variants on RNA splicing in CAGI6.

作者信息

Lord Jenny, Oquendo Carolina Jaramillo, Wai Htoo A, Douglas Andrew G L, Bunyan David J, Wang Yaqiong, Hu Zhiqiang, Zeng Zishuo, Danis Daniel, Katsonis Panagiotis, Williams Amanda, Lichtarge Olivier, Chang Yuchen, Bagnall Richard D, Mount Stephen M, Matthiasardottir Brynja, Lin Chiaofeng, Hansen Thomas van Overeem, Leman Raphael, Martins Alexandra, Houdayer Claude, Krieger Sophie, Bakolitsa Constantina, Peng Yisu, Kamandula Akash, Radivojac Predrag, Baralle Diana

机构信息

Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.

Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.

出版信息

Hum Genet. 2025 Mar;144(2-3):243-251. doi: 10.1007/s00439-023-02624-3. Epub 2024 Jan 3.

Abstract

Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact. The performance of 12 prediction methods, along with SpliceAI and CADD, was compared on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools and information from databases exceeded all others for specificity. Several challenge methods equalled or exceeded the performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improvements to splicing prediction methods for successful clinical application.

摘要

破坏剪接的变异是临床诊断不足的罕见病的常见病因。需要准确有效的方法来预测变异对剪接的影响,以解读外显子组和基因组测序鉴定出的越来越多的意义未明变异(VUS)。在此,我们展示了CAGI6剪接VUS挑战赛的结果,该挑战赛邀请对56个经临床鉴定且功能验证以确定剪接影响的变异的剪接影响进行预测。在56个功能验证的变异上比较了12种预测方法以及SpliceAI和CADD的性能。两种不同方法达到的最高准确率为82%,一种方法根据次要等位基因频率对SpliceAI分数进行加权,另一种方法应用最近发布的剪接预测管道(SPiP)。SPiP在敏感性方面表现最佳,而一种结合多种预测工具和来自数据库信息的集成方法在特异性方面超过了所有其他方法。几种挑战赛方法达到或超过了SpliceAI的性能,预测方法的最终选择可能取决于实验或临床目的。至少50%的方法对四分之一的变异预测错误,这突出表明需要进一步改进剪接预测方法以实现成功的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3874/11976748/3c6d83ba72fc/439_2023_2624_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验