Wang David, Gazzara Matthew R, Jewell San, Wales-McGrath Benjamin, Brown Christopher D, Choi Peter S, Barash Yoseph
Department of Genetics, Perelman School of Medicine, University of Pennsylvania.
Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania.
bioRxiv. 2024 Sep 3:2024.09.01.610696. doi: 10.1101/2024.09.01.610696.
Genome-wide association studies (GWAS) have identified thousands of putative disease causing variants with unknown regulatory effects. Efforts to connect these variants with splicing quantitative trait loci (sQTLs) have provided functional insights, yet sQTLs reported by existing methods cannot explain many GWAS signals. We show current sQTL modeling approaches can be improved by considering alternative splicing representation, model calibration, and covariate integration. We then introduce MAJIQTL, a new pipeline for sQTL discovery. MAJIQTL includes two new statistical methods: a weighted multiple testing approach for sGene discovery and a model for sQTL effect size inference to improve variant prioritization. By applying MAJIQTL to GTEx, we find significantly more sGenes harboring sQTLs with functional significance. Notably, our analysis implicates the novel variant rs582283 in Alzheimer's disease. Using antisense oligonucleotides, we validate this variant's effect by blocking the implicated YBX3 binding site, leading to exon skipping in the gene MS4A3.
全基因组关联研究(GWAS)已经鉴定出数千个具有未知调控效应的假定致病变异。将这些变异与剪接定量性状位点(sQTL)联系起来的努力提供了功能方面的见解,然而现有方法报告的sQTL无法解释许多GWAS信号。我们表明,通过考虑可变剪接表示、模型校准和协变量整合,可以改进当前的sQTL建模方法。然后,我们引入了MAJIQTL,这是一种用于发现sQTL的新流程。MAJIQTL包括两种新的统计方法:一种用于发现s基因的加权多重检验方法和一种用于推断sQTL效应大小以改善变异优先级排序的模型。通过将MAJIQTL应用于GTEx,我们发现携带具有功能意义的sQTL的s基因明显更多。值得注意的是,我们的分析表明新型变异rs582283与阿尔茨海默病有关。使用反义寡核苷酸,我们通过阻断相关的YBX3结合位点来验证该变异的效应,从而导致基因MS4A3中的外显子跳跃。