Suppr超能文献

基于人工智能算法的可植入式心脏监测器的诊断性能得到提高。

Improved diagnostic performance of insertable cardiac monitors by an artificial intelligence-based algorithm.

机构信息

Implicity SAS, Paris, France.

Jacques Cartier Private Hospital, Massy, France.

出版信息

Europace. 2023 Dec 28;26(1). doi: 10.1093/europace/euad375.

Abstract

AIMS

The increasing use of insertable cardiac monitors (ICM) produces a high rate of false positive (FP) diagnoses. Their verification results in a high workload for caregivers. We evaluated the performance of an artificial intelligence (AI)-based ILR-ECG Analyzer™ (ILR-ECG-A). This machine-learning algorithm reclassifies ICM-transmitted events to minimize the rate of FP diagnoses, while preserving device sensitivity.

METHODS AND RESULTS

We selected 546 recipients of ICM followed by the Implicity™ monitoring platform. To avoid clusterization, a single episode per ICM abnormal diagnosis (e.g. asystole, bradycardia, atrial tachycardia (AT)/atrial fibrillation (AF), ventricular tachycardia, artefact) was selected per patient, and analyzed by the ILR-ECG-A, applying the same diagnoses as the ICM. All episodes were reviewed by an adjudication committee (AC) and the results were compared. Among 879 episodes classified as abnormal by the ICM, 80 (9.1%) were adjudicated as 'Artefacts', 283 (32.2%) as FP, and 516 (58.7%) as 'abnormal' by the AC. The algorithm reclassified 215 of the 283 FP as normal (76.0%), and confirmed 509 of the 516 episodes as abnormal (98.6%). Seven undiagnosed false negatives were adjudicated as AT or non-specific abnormality. The overall diagnostic specificity was 76.0% and the sensitivity was 98.6%.

CONCLUSION

The new AI-based ILR-ECG-A lowered the rate of FP ICM diagnoses significantly while retaining a > 98% sensitivity. This will likely alleviate considerably the clinical burden represented by the review of ICM events.

摘要

目的

越来越多的可植入心脏监测器(ICM)的使用导致了大量的假阳性(FP)诊断。这些诊断的验证会给护理人员带来很大的工作负担。我们评估了基于人工智能(AI)的 ILR-ECG Analyzer™(ILR-ECG-A)的性能。该机器学习算法重新分类 ICM 传输的事件,以尽量减少 FP 诊断的发生率,同时保持设备的灵敏度。

方法和结果

我们选择了 546 名接受 ICM 监测的患者,随后使用了 ImplicityTM 监测平台。为了避免聚类,每个患者的 ICM 异常诊断(如停搏、心动过缓、房性心动过速(AT)/心房颤动(AF)、室性心动过速、伪差)仅选择一个事件,由 ILR-ECG-A 进行分析,并应用与 ICM 相同的诊断。所有的事件都由一个裁决委员会(AC)进行审查,并比较结果。在 ICM 分类为异常的 879 个事件中,80 个(9.1%)被裁决为“伪差”,283 个(32.2%)为 FP,516 个(58.7%)为 AC 判定的“异常”。该算法将 283 个 FP 中的 215 个重新分类为正常(76.0%),并确认了 516 个事件中的 509 个为异常(98.6%)。7 个未诊断的假阴性被裁决为 AT 或非特异性异常。总的诊断特异性为 76.0%,敏感性为 98.6%。

结论

新的基于 AI 的 ILR-ECG-A 显著降低了 ICM 诊断的 FP 率,同时保持了>98%的灵敏度。这将大大减轻对 ICM 事件审查的临床负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce68/10787483/daf896ffac94/euad375f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验