Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
Center for Autonomous Materials Design, Duke University, Durham, NC, USA.
Nature. 2024 Jan;625(7993):66-73. doi: 10.1038/s41586-023-06786-y. Epub 2024 Jan 3.
The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor, most innovation has been slowly driven by experimental means. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy-entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.
在极端环境下提高功能的需求推动了人们对高熵陶瓷的兴趣。除了用熵形成能力描述符进行高熵碳化物的计算发现外,大多数创新都是通过实验手段缓慢推动的。因此,该领域的进展需要更多的理论贡献。在这里,我们引入了无序焓熵描述符(DEED),这是一个可以捕捉熵增益和焓成本之间平衡的描述符,允许对多组分陶瓷的功能可合成性进行正确分类,而与化学和结构无关。为了使我们的计算成为可能,我们开发了一种卷积算法,可以大大减少计算资源。此外,DEED 指导了新单相高熵碳氮化物和硼化物的实验发现。这项工作集成到了 AFLOW 计算生态系统中,提供了一系列潜在的新候选材料,等待着实验的发现。