Suppr超能文献

活体肝移植中的肝脏容积和解剖评估:现代影像学与人工智能的作用

Liver volumetric and anatomic assessment in living donor liver transplantation: The role of modern imaging and artificial intelligence.

作者信息

Machry Mayara, Ferreira Luis Fernando, Lucchese Angelica Maria, Kalil Antonio Nocchi, Feier Flavia Heinz

机构信息

Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90020-090, Brazil.

Postgraduation Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil.

出版信息

World J Transplant. 2023 Dec 18;13(6):290-298. doi: 10.5500/wjt.v13.i6.290.

Abstract

The shortage of deceased donor organs has prompted the development of alternative liver grafts for transplantation. Living-donor liver transplantation (LDLT) has emerged as a viable option, expanding the donor pool and enabling timely transplantation with favorable graft function and improved long-term outcomes. An accurate evaluation of the donor liver's volumetry (LV) and anatomical study is crucial to ensure adequate future liver remnant, graft volume and precise liver resection. Thus, ensuring donor safety and an appropriate graft-to-recipient weight ratio. Manual LV (MLV) using computed tomography has traditionally been considered the gold standard for assessing liver volume. However, the method has been limited by cost, subjectivity, and variability. Automated LV techniques employing advanced segmentation algorithms offer improved reproducibility, reduced variability, and enhanced efficiency compared to manual measurements. However, the accuracy of automated LV requires further investigation. The study provides a comprehensive review of traditional and emerging LV methods, including semi-automated image processing, automated LV techniques, and machine learning-based approaches. Additionally, the study discusses the respective strengths and weaknesses of each of the aforementioned techniques. The use of artificial intelligence (AI) technologies, including machine learning and deep learning, is expected to become a routine part of surgical planning in the near future. The implementation of AI is expected to enable faster and more accurate image study interpretations, improve workflow efficiency, and enhance the safety, speed, and cost-effectiveness of the procedures. Accurate preoperative assessment of the liver plays a crucial role in ensuring safe donor selection and improved outcomes in LDLT. MLV has inherent limitations that have led to the adoption of semi-automated and automated software solutions. Moreover, AI has tremendous potential for LV and segmentation; however, its widespread use is hindered by cost and availability. Therefore, the integration of multiple specialties is necessary to embrace technology and explore its possibilities, ranging from patient counseling to intraoperative decision-making through automation and AI.

摘要

已故供体器官的短缺促使人们研发用于移植的替代性肝移植供体。活体肝移植(LDLT)已成为一种可行的选择,扩大了供体库,并能实现及时移植,使移植肝功能良好且长期预后得到改善。准确评估供肝体积(LV)和进行解剖学研究对于确保足够的未来肝脏残余量、移植肝体积以及精确的肝切除至关重要。从而确保供体安全以及合适的移植肝与受体体重比。传统上,使用计算机断层扫描的手动LV(MLV)被认为是评估肝脏体积的金标准。然而,该方法受到成本、主观性和变异性的限制。与手动测量相比,采用先进分割算法的自动LV技术具有更高的可重复性、更低的变异性和更高的效率。然而,自动LV的准确性仍需进一步研究。该研究全面回顾了传统和新兴的LV方法,包括半自动图像处理、自动LV技术和基于机器学习的方法。此外,该研究还讨论了上述每种技术的优缺点。包括机器学习和深度学习在内的人工智能(AI)技术的使用预计在不久的将来将成为手术规划的常规部分。预计AI的应用将能够更快、更准确地解读图像研究结果,提高工作流程效率,并提高手术的安全性、速度和成本效益。准确的术前肝脏评估对于确保安全的供体选择和改善LDLT的预后起着至关重要的作用。MLV存在固有局限性,这导致了半自动和自动软件解决方案的采用。此外,AI在LV和分割方面具有巨大潜力;然而,其广泛应用受到成本和可用性的阻碍。因此,有必要整合多个专业领域,以接纳技术并探索其可能性,从患者咨询到通过自动化和AI进行术中决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a36/10758682/f1c2967ca149/WJT-13-290-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验