Pflieger Keno, Evertz Andreas, Overmeyer Ludger
Appl Opt. 2024 Jan 1;63(1):66-76. doi: 10.1364/AO.501079.
The booming demand for efficient, scalable optical networks has intensified the exploration of innovative strategies that seamlessly connect large-scale fiber networks with miniaturized photonic components. Within this context, our research introduces a neural network, specifically a convolutional neural network (CNN), as a trailblazing method for approximating the nonlinear attenuation function of centimeter-scale multimode waveguides. Informed by a ray tracing model that simulated many flexographically printed waveguide configurations, we cultivated a comprehensive dataset that laid the groundwork for rigorous CNN training. This model demonstrates remarkable adeptness in estimating optical losses due to waveguide curvature, achieving an attenuation standard deviation of 1.5 dB for test data over an attenuation range of 50 dB. Notably, the CNN model's evaluation speed, at 517 µs per waveguide, starkly contrasts the used ray tracing model that demands 5-10 min for a similar task. This substantial increase in computational efficiency accentuates the model's paramount significance, especially in scenarios mandating swift waveguide assessments, such as optical network optimization. In a subsequent study, we test the trained model on actual measurements of fabricated waveguides and its optical model. All approaches show excellent agreement in assessing the waveguide's attenuation within measurement accuracy. Our endeavors elucidate the transformative potential of machine learning in revolutionizing optical network design.
对高效、可扩展光网络的蓬勃需求,强化了对创新策略的探索,这些策略能无缝连接大规模光纤网络与小型化光子组件。在此背景下,我们的研究引入了一种神经网络,具体而言是卷积神经网络(CNN),作为一种开创性方法来近似厘米级多模波导的非线性衰减函数。基于模拟了许多柔印波导配置的光线追踪模型,我们构建了一个全面的数据集,为严格的CNN训练奠定了基础。该模型在估计由于波导曲率导致的光学损耗方面表现出卓越的能力,在50 dB的衰减范围内,测试数据的衰减标准偏差达到1.5 dB。值得注意的是,CNN模型的评估速度为每个波导517微秒,这与用于类似任务需要5 - 10分钟的光线追踪模型形成鲜明对比。计算效率的大幅提高凸显了该模型的至关重要性,特别是在诸如光网络优化等需要快速进行波导评估的场景中。在后续研究中,我们在制造的波导及其光学模型的实际测量中测试了训练好的模型。在测量精度范围内评估波导衰减时,所有方法都显示出极好的一致性。我们的努力阐明了机器学习在彻底改变光网络设计方面的变革潜力。