Suppr超能文献

用于光流体复用的高保真激发模式的基于优化ARROW的MMI波导

Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.

作者信息

Stott Matthew A, Ganjalizadeh Vahid, Olsen Maclain, Orfila Marcos, McMurray Johnny, Schmidt Holger, Hawkins Aaron R

机构信息

Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA.

School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA.

出版信息

IEEE J Quantum Electron. 2018 Jun;54(3). doi: 10.1109/JQE.2018.2816120. Epub 2018 Mar 15.

Abstract

Multimode interference (MMI) waveguides can be used for multiplexing and de-multiplexing optical signals. High fidelity, wavelength dependent multi-spot patterns from MMI waveguides are useful for sensitive and simultaneous identification of multiple targets in multiplexed fluorescence optofluidic biosensors. Through experiments and simulation, this paper explores design parameters for an MMI rib anti-resonant reflecting optical waveguide (ARROW) in order to produce high fidelity spot patterns at the liquid core biomarker excitation region. Width and etch depth of the single excitation rib waveguide used to excite the MMI waveguide are especially critical because they determine the size of the input optical mode which is imaged at the MMI waveguide's output. To increase optical throughput into the MMI waveguide when light is coupled in from an optical fiber, tapers in the waveguide width can be used for better mode matching.

摘要

多模干涉(MMI)波导可用于光信号的复用和解复用。MMI波导产生的高保真、波长相关的多点图案,对于在复用荧光光流体生物传感器中灵敏且同时地识别多个目标很有用。通过实验和模拟,本文探索了MMI肋形抗谐振反射光波导(ARROW)的设计参数,以便在液芯生物标志物激发区域产生高保真光斑图案。用于激发MMI波导的单个激发肋形波导的宽度和蚀刻深度尤为关键,因为它们决定了在MMI波导输出端成像的输入光模式的大小。当光从光纤耦合进入MMI波导时,为了提高光通量,可使用波导宽度渐变来实现更好的模式匹配。

相似文献

1
Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
IEEE J Quantum Electron. 2018 Jun;54(3). doi: 10.1109/JQE.2018.2816120. Epub 2018 Mar 15.
2
Buried Rib SiO Multimode Interference Waveguides for Optofluidic Multiplexing.
IEEE Photonics Technol Lett. 2018 Oct 15;30(16):1487-1490. doi: 10.1109/LPT.2018.2858258. Epub 2018 Jul 23.
3
Multi-channel velocity multiplexing of single virus detection on an optofluidic chip.
Opt Lett. 2018 Sep 15;43(18):4425-4428. doi: 10.1364/OL.43.004425.
4
Optofluidic wavelength division multiplexing for single-virus detection.
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12933-7. doi: 10.1073/pnas.1511921112. Epub 2015 Oct 5.
7
Tunable self-imaging effect using hybrid optofluidic waveguides.
Lab Chip. 2015 Dec 7;15(23):4398-403. doi: 10.1039/c5lc01066g.
8
Optofluidic detection of Zika nucleic acid and protein biomarkers using multimode interference multiplexing.
Biomed Opt Express. 2018 Jul 16;9(8):3725-3730. doi: 10.1364/BOE.9.003725. eCollection 2018 Aug 1.
9
Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection.
IEEE Photonics Technol Lett. 2021 Aug 15;33(16):884-887. doi: 10.1109/lpt.2021.3069673. Epub 2021 Mar 30.
10
Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures.
Opt Express. 2007 Jun 25;15(13):8300-8. doi: 10.1364/oe.15.008300.

引用本文的文献

1
Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection.
IEEE Photonics Technol Lett. 2021 Aug 15;33(16):884-887. doi: 10.1109/lpt.2021.3069673. Epub 2021 Mar 30.
2
Performance Comparison of Flow-Through Optofluidic Biosensor Designs.
Biosensors (Basel). 2021 Jul 7;11(7):226. doi: 10.3390/bios11070226.
3
Optofluidic Flow-Through Biosensor Sensitivity - Model and Experiment.
J Lightwave Technol. 2021 May 15;39(10):3330-3340. doi: 10.1109/jlt.2021.3061872. Epub 2021 Feb 24.
4
7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening.
Opt Express. 2020 Oct 26;28(22):33019-33027. doi: 10.1364/OE.402311.
5
A Low-Cost Time-Correlated Single Photon Counting Portable DNA Analyzer.
Sensors (Basel). 2019 Jun 26;19(13):2838. doi: 10.3390/s19132838.

本文引用的文献

2
On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood.
Biomicrofluidics. 2016 Dec 15;10(6):064116. doi: 10.1063/1.4968033. eCollection 2016 Nov.
3
Signal-to-noise Enhancement in Optical Detection of Single Viruses with Multi-spot Excitation.
IEEE J Sel Top Quantum Electron. 2016 Jul-Aug;22(4). doi: 10.1109/JSTQE.2015.2503321. Epub 2016 Mar 21.
4
Optofluidic wavelength division multiplexing for single-virus detection.
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12933-7. doi: 10.1073/pnas.1511921112. Epub 2015 Oct 5.
5
Hollow waveguides with low intrinsic photoluminescence fabricated with Ta(2)O(5) and SiO(2) films.
Appl Phys Lett. 2011 Feb 28;98(9):91104. doi: 10.1063/1.3561749. Epub 2011 Mar 2.
6
Optofluidic waveguides: I. Concepts and implementations.
Microfluid Nanofluidics. 2008 Jan 1;4(1-2):3-16. doi: 10.1007/s10404-007-0199-7.
7
Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission.
IEEE Photonics Technol Lett. 2010 Jul 12;22(15):1147-1149. doi: 10.1109/LPT.2010.2051145.
8
Principles and application of reduced beat length in MMI couplers.
Opt Express. 2006 Sep 18;14(19):8753-64. doi: 10.1364/oe.14.008753.
9
Compact silicon-on-insulator-based multimode interference coupler with bilevel taper structure.
Appl Opt. 2005 Aug 20;44(24):5036-41. doi: 10.1364/ao.44.005036.
10
Molecular beacons: colorful analysis of nucleic acids.
Expert Rev Mol Diagn. 2002 Jan;2(1):77-86. doi: 10.1586/14737159.2.1.77.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验