Stott Matthew A, Ganjalizadeh Vahid, Olsen Maclain, Orfila Marcos, McMurray Johnny, Schmidt Holger, Hawkins Aaron R
Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA.
School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA.
IEEE J Quantum Electron. 2018 Jun;54(3). doi: 10.1109/JQE.2018.2816120. Epub 2018 Mar 15.
Multimode interference (MMI) waveguides can be used for multiplexing and de-multiplexing optical signals. High fidelity, wavelength dependent multi-spot patterns from MMI waveguides are useful for sensitive and simultaneous identification of multiple targets in multiplexed fluorescence optofluidic biosensors. Through experiments and simulation, this paper explores design parameters for an MMI rib anti-resonant reflecting optical waveguide (ARROW) in order to produce high fidelity spot patterns at the liquid core biomarker excitation region. Width and etch depth of the single excitation rib waveguide used to excite the MMI waveguide are especially critical because they determine the size of the input optical mode which is imaged at the MMI waveguide's output. To increase optical throughput into the MMI waveguide when light is coupled in from an optical fiber, tapers in the waveguide width can be used for better mode matching.
多模干涉(MMI)波导可用于光信号的复用和解复用。MMI波导产生的高保真、波长相关的多点图案,对于在复用荧光光流体生物传感器中灵敏且同时地识别多个目标很有用。通过实验和模拟,本文探索了MMI肋形抗谐振反射光波导(ARROW)的设计参数,以便在液芯生物标志物激发区域产生高保真光斑图案。用于激发MMI波导的单个激发肋形波导的宽度和蚀刻深度尤为关键,因为它们决定了在MMI波导输出端成像的输入光模式的大小。当光从光纤耦合进入MMI波导时,为了提高光通量,可使用波导宽度渐变来实现更好的模式匹配。