Suppr超能文献

用于早期胰腺癌检测的人工智能增强成像

Artificial Intelligence-Augmented Imaging for Early Pancreatic Cancer Detection.

作者信息

Antony Ajith, Mukherjee Sovanlal, Bhinder Khurram, Murlidhar Murlidhar, Zarrintan Armin, Goenka Ajit H

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, USA.

Divisions of Abdominal and Nuclear Radiology, Nuclear Radiology Research Operations, Enterprise PET/MR Research, Education and Executive Committee, Risk Assessment, Early Detection and Interception (REDI), Mayo Clinic Comprehensive Cancer Center (MCCCC), Rochester, MN, USA.

出版信息

Visc Med. 2025 May 28:1-9. doi: 10.1159/000546603.

Abstract

BACKGROUND

Pancreatic ductal adenocarcinoma (PDA) is a highly lethal malignancy, often diagnosed at an advanced stage due to its insidious progression and the absence of effective early detection strategies. Accurate diagnosis and staging are critical for optimizing treatment selection and improving patient survival. Contrast-enhanced computed tomography (CT) remains the diagnostic standard for PDA; however, its sensitivity is limited by interobserver variability and the frequent absence of overt morphological abnormalities in early stage disease.

SUMMARY

Artificial intelligence (AI) has emerged as a promising tool for overcoming the inherent limitations of conventional radiologic assessment by leveraging radiomics and deep learning models to extract subtle imaging signatures of PDA that are imperceptible to the human eye. AI-driven models have demonstrated the ability to detect pre-diagnostic PDA on CT scans months to years before clinical presentation by identifying textural and structural changes in the pancreas. Furthermore, automated volumetric pancreas segmentation enhances reproducibility and facilitates the discovery of imaging biomarkers associated with early carcinogenesis. Despite these advances, key challenges remain, including dataset heterogeneity, model interpretability, and prospective validation in real-world clinical settings.

KEY MESSAGES

AI-driven approaches offer a transformative opportunity to augment CT-based PDA detection, reduce diagnostic uncertainty, and facilitate earlier intervention. However, robust external validation, integration into clinical workflows, and prospective trials are essential to establish AI as a reliable adjunct in PDA diagnosis and staging.

摘要

背景

胰腺导管腺癌(PDA)是一种高度致命的恶性肿瘤,由于其隐匿性进展以及缺乏有效的早期检测策略,常常在晚期才被诊断出来。准确的诊断和分期对于优化治疗选择和提高患者生存率至关重要。对比增强计算机断层扫描(CT)仍然是PDA的诊断标准;然而,其敏感性受到观察者间差异的限制,并且在疾病早期常常缺乏明显的形态学异常。

总结

人工智能(AI)已成为一种有前景的工具,通过利用放射组学和深度学习模型来提取人眼难以察觉的PDA细微影像特征,从而克服传统放射学评估的固有局限性。人工智能驱动的模型已证明能够通过识别胰腺的纹理和结构变化,在临床表现前数月至数年的CT扫描中检测出预诊断的PDA。此外,自动体积胰腺分割提高了可重复性,并有助于发现与早期致癌作用相关的影像生物标志物。尽管取得了这些进展,但关键挑战仍然存在,包括数据集异质性、模型可解释性以及在现实临床环境中的前瞻性验证。

关键信息

人工智能驱动的方法为增强基于CT的PDA检测、减少诊断不确定性以及促进早期干预提供了变革性机遇。然而,强大的外部验证、融入临床工作流程以及前瞻性试验对于将人工智能确立为PDA诊断和分期的可靠辅助手段至关重要。

相似文献

3
Artificial intelligence for detecting keratoconus.人工智能在圆锥角膜检测中的应用。
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.

本文引用的文献

9
Cancer statistics, 2024.2024年癌症统计数据。
CA Cancer J Clin. 2024 Jan-Feb;74(1):12-49. doi: 10.3322/caac.21820. Epub 2024 Jan 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验