Chen Chuangchuang, Gu Honggang, Liu Shiyuan
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Optics Valley Laboratory, Wuhan, Hubei, 430074, China.
Light Sci Appl. 2024 Jan 5;13(1):9. doi: 10.1038/s41377-023-01355-4.
Miniaturizing spectrometers for compact and cost-effective mobile platforms is a major challenge in current spectroscopy research, where conventional spectrometers are impractical due to their bulky footprint. Existing miniaturized designs primarily rely on precalibrated response functions of nanophotonic structures to encode spectral information captured in a snapshot by detector arrays. Accurate spectrum reconstruction is achieved through computational techniques, but this requires precise component design, high-precision fabrication, and calibration. We propose an ultra-simplified computational spectrometer that employs a one-to-broadband diffraction decomposition strategy facilitated by a numerical regularized transform that depends only on the spectrum of the diffracted radiation. The key feature of our design is the use of a simple, arbitrarily shaped pinhole as the partial disperser, eliminating the need for complex encoding designs and full spectrum calibration. Our spectrometer achieves a reconstructed spectral peak location accuracy of better than 1 nm over a 200 nm bandwidth and excellent resolution for peaks separated by 3 nm in a bimodal spectrum, all within a compact footprint of under half an inch. Notably, our approach also reveals a breakthrough in broadband coherent diffractive imaging without requiring any prior knowledge of the broadband illumination spectrum, assumptions of non-dispersive specimens, or correction for detector quantum efficiency.
将光谱仪小型化以用于紧凑且经济高效的移动平台是当前光谱学研究中的一项重大挑战,在这一领域,传统光谱仪因其庞大的占地面积而不切实际。现有的小型化设计主要依赖于纳米光子结构的预校准响应函数,以便对探测器阵列在快照中捕获的光谱信息进行编码。通过计算技术可实现精确的光谱重建,但这需要精确的组件设计、高精度制造和校准。我们提出了一种超简化的计算光谱仪,它采用了一种一对一宽带衍射分解策略,该策略由仅依赖于衍射辐射光谱的数值正则变换促成。我们设计的关键特性是使用一个简单的、任意形状的针孔作为部分色散器,无需复杂的编码设计和全光谱校准。我们的光谱仪在200纳米带宽内实现了优于1纳米的重建光谱峰值位置精度,并且在双峰光谱中对间隔3纳米的峰值具有出色的分辨率,所有这些都在不到半英寸的紧凑占地面积内实现。值得注意的是,我们的方法还在宽带相干衍射成像方面取得了突破,无需任何关于宽带照明光谱的先验知识、非色散样本的假设或探测器量子效率的校正。