Li He, Wang Zun, Zou Nianlong, Ye Meng, Xu Runzhang, Gong Xiaoxun, Duan Wenhui, Xu Yong
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
Institute for Advanced Study, Tsinghua University, Beijing, China.
Nat Comput Sci. 2022 Jun;2(6):367-377. doi: 10.1038/s43588-022-00265-6. Epub 2022 Jun 23.
The marriage of density functional theory (DFT) and deep-learning methods has the potential to revolutionize modern computational materials science. Here we develop a deep neural network approach to represent the DFT Hamiltonian (DeepH) of crystalline materials, aiming to bypass the computationally demanding self-consistent field iterations of DFT and substantially improve the efficiency of ab initio electronic-structure calculations. A general framework is proposed to deal with the large dimensionality and gauge (or rotation) covariance of the DFT Hamiltonian matrix by virtue of locality, and this is realized by a message-passing neural network for deep learning. High accuracy, high efficiency and good transferability of the DeepH method are generally demonstrated for various kinds of material system and physical property. The method provides a solution to the accuracy-efficiency dilemma of DFT and opens opportunities to explore large-scale material systems, as evidenced by a promising application in the study of twisted van der Waals materials.
密度泛函理论(DFT)与深度学习方法的结合有潜力彻底改变现代计算材料科学。在此,我们开发了一种深度神经网络方法来表示晶体材料的DFT哈密顿量(DeepH),旨在绕过DFT计算量巨大的自洽场迭代,并大幅提高从头算电子结构计算的效率。我们提出了一个通用框架,借助局部性来处理DFT哈密顿矩阵的高维度和规范(或旋转)协方差,这通过用于深度学习的消息传递神经网络得以实现。对于各种材料体系和物理性质,DeepH方法总体上展现出了高精度、高效率和良好的可迁移性。该方法为DFT的精度-效率困境提供了解决方案,并为探索大规模材料体系带来了机遇,这在对扭曲范德瓦尔斯材料的研究中的一个有前景的应用中得到了证明。