Suppr超能文献

幽灵网络:学习具有电子自由度和非局部效应的力场。

SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects.

作者信息

Unke Oliver T, Chmiela Stefan, Gastegger Michael, Schütt Kristof T, Sauceda Huziel E, Müller Klaus-Robert

机构信息

Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany.

DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat), Technische Universität Berlin, 10623, Berlin, Germany.

出版信息

Nat Commun. 2021 Dec 14;12(1):7273. doi: 10.1038/s41467-021-27504-0.

Abstract

Machine-learned force fields combine the accuracy of ab initio methods with the efficiency of conventional force fields. However, current machine-learned force fields typically ignore electronic degrees of freedom, such as the total charge or spin state, and assume chemical locality, which is problematic when molecules have inconsistent electronic states, or when nonlocal effects play a significant role. This work introduces SpookyNet, a deep neural network for constructing machine-learned force fields with explicit treatment of electronic degrees of freedom and nonlocality, modeled via self-attention in a transformer architecture. Chemically meaningful inductive biases and analytical corrections built into the network architecture allow it to properly model physical limits. SpookyNet improves upon the current state-of-the-art (or achieves similar performance) on popular quantum chemistry data sets. Notably, it is able to generalize across chemical and conformational space and can leverage the learned chemical insights, e.g. by predicting unknown spin states, thus helping to close a further important remaining gap for today's machine learning models in quantum chemistry.

摘要

机器学习力场将从头算方法的准确性与传统力场的效率结合起来。然而,当前的机器学习力场通常忽略电子自由度,如总电荷或自旋状态,并假设化学局域性,当分子具有不一致的电子状态或非局域效应起重要作用时,这会产生问题。这项工作引入了SpookyNet,这是一种深度神经网络,用于构建明确处理电子自由度和非局域性的机器学习力场,通过变压器架构中的自注意力进行建模。内置在网络架构中的化学意义明确的归纳偏差和解析校正使其能够正确地对物理极限进行建模。SpookyNet在流行的量子化学数据集上改进了当前的最先进水平(或实现了类似的性能)。值得注意的是,它能够在化学和构象空间中进行泛化,并能够利用学到的化学见解,例如通过预测未知的自旋状态,从而有助于弥合当今量子化学机器学习模型中另一个重要的剩余差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f1/8671403/879e8f13f80a/41467_2021_27504_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验