Xu Wenbin, Reuter Karsten, Andersen Mie
Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany.
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
Nat Comput Sci. 2022 Jul;2(7):443-450. doi: 10.1038/s43588-022-00280-7. Epub 2022 Jul 25.
Computational screening in heterogeneous catalysis relies increasingly on machine learning models for predicting key input parameters due to the high cost of computing these directly using first-principles methods. This becomes especially relevant when considering complex materials spaces such as alloys, or complex reaction mechanisms with adsorbates that may exhibit bi- or higher-dentate adsorption motifs. Here we present a data-efficient approach to the prediction of binding motifs and associated adsorption enthalpies of complex adsorbates at transition metals and their alloys based on a customized Wasserstein Weisfeiler-Lehman graph kernel and Gaussian process regression. The model shows good predictive performance, not only for the elemental transition metals on which it was trained, but also for an alloy based on these transition metals. Furthermore, incorporation of minimal new training data allows for predicting an out-of-domain transition metal. We believe the model may be useful in active learning approaches, for which we present an ensemble uncertainty estimation approach.
由于直接使用第一性原理方法计算关键输入参数的成本很高,异相催化中的计算筛选越来越依赖机器学习模型来预测这些参数。在考虑复杂的材料空间(如合金)或具有可能表现出双齿或更高齿吸附模式的吸附质的复杂反应机理时,这一点尤为重要。在此,我们基于定制的瓦瑟斯坦-魏斯费勒-莱曼图核和高斯过程回归,提出了一种数据高效的方法,用于预测过渡金属及其合金上复杂吸附质的结合模式和相关吸附焓。该模型不仅对其训练所用的单质过渡金属表现出良好的预测性能,而且对基于这些过渡金属的合金也有良好的预测性能。此外,纳入最少的新训练数据就能预测域外过渡金属。我们相信该模型可能在主动学习方法中有用,为此我们提出了一种集成不确定性估计方法。