Suppr超能文献

一种基于结构相似性的数据挖掘算法,用于多反应物非均相催化剂建模。

A structural similarity based data-mining algorithm for modeling multi-reactant heterogeneous catalysts.

作者信息

Zeng Jin, Gui Jiatong, Deshpande Siddharth

机构信息

Department of Chemical Engineering, University of Rochester NY 14627 USA

出版信息

Chem Sci. 2025 May 20. doi: 10.1039/d5sc02117k.

Abstract

First-principles-based Density Functional Theory (DFT) simulations are powerful tools for studying heterogeneous catalyst systems. However, their high computational cost and large configuration space hinder their application in understanding multi-reactant catalysis on geometrically diverse surfaces. This work introduces an innovative similarity algorithm that quantifies the structural differences between atomic configurations to address this challenge. The quantification effectively identifies structurally dissimilar configurations with minimal human intervention. Consequently, data mining the configurational phase-space through this similarity algorithm drastically reduces the number of DFT simulations required to identify stable atomic models relevant to key multi-reactant chemistries. In this work, the similarity algorithm is utilized to understand CO*-OH* co-adsorption at varying adsorbate coverages on a stepped Pt surface by DFT simulating only 2% of possible unique configurations. Furthermore, the versatility of the similarity algorithm is showcased by analyzing bidentate adsorption on a stepped Pt surface. This work serves as a crucial steppingstone towards understanding important multi-reactant heterogeneous catalytic chemistries.

摘要

基于第一性原理的密度泛函理论(DFT)模拟是研究多相催化剂体系的有力工具。然而,其高昂的计算成本和庞大的构型空间阻碍了它们在理解几何结构多样表面上的多反应物催化方面的应用。这项工作引入了一种创新的相似性算法,该算法可量化原子构型之间的结构差异,以应对这一挑战。这种量化能够在最少人工干预的情况下有效识别结构不同的构型。因此,通过这种相似性算法对构型相空间进行数据挖掘,极大地减少了识别与关键多反应物化学相关的稳定原子模型所需的DFT模拟次数。在这项工作中,相似性算法被用于通过仅对2%的可能唯一构型进行DFT模拟来理解在阶梯状Pt表面上不同吸附质覆盖度下的CO* - OH*共吸附。此外,通过分析在阶梯状Pt表面上的双齿吸附展示了相似性算法的通用性。这项工作是理解重要的多反应物多相催化化学的关键垫脚石。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18dd/12217674/f13f622124a4/d5sc02117k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验