Suppr超能文献

基于平扫 CT 的直方图分析在血管前纵隔偶发瘤中鉴别胸腺瘤和淋巴瘤。

Histogram analysis based on unenhanced CT for identifying thymoma and lymphoma among prevascular mediastinal incidentalomas.

机构信息

Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.

Department of Radiology, Dongying People's Hospital, Shandong, China.

出版信息

Cancer Imaging. 2024 Jan 4;24(1):5. doi: 10.1186/s40644-023-00617-z.

Abstract

OBJECTIVE

To determine whether histogram analysis based on unenhanced CT can play a role in the differential diagnosis of thymoma and lymphoma from thymic hyperplasia and cyst (mean CT attenuation > 10 HU).

MATERIALS AND METHODS

This retrospective study included consecutive asymptomatic participants who have prevascular mediastinal lesions incidentally detected by unenhanced CT between December 2013 and August 2020, and with definitive diagnosis by pathology or additional radiologic work-ups. A total of thirteen histogram parameters on enhanced CT were calculated for each lesion, then were compared between tumor (thymoma + lymphoma) and non-tumor (hyperplasia + cyst). Receiver operating characteristic analysis was conducted to investigate the performance of histogram parameter for identifying tumor.

RESULTS

The study population included 192 patients (106 men and 86 women) with a mean age of 50.5 years at the time of CT examination. Of them, 94 patients have tumor (87 thymomas and 7 lymphoma) and 98 have non-tumor (48 thymic hyperplasia and 50 cysts). Nine of the thirteen histogram parameters revealed significant difference between the two groups, including median, minimum, range, 10th percentile, 90th percentile, kurtosis, skewness, uniformity and entropy. No significant difference was observed in the mean CT attenuation between groups. Higher median was found to be independent predictors for distinguishing tumor from non-tumor, and can achieve an area under the curve (AUC) of 0.785 (95% confidence interval [95% IC], 0.720-0.841).

CONCLUSIONS

Histogram analysis based on unenhanced CT may be able to provide some help in the differential diagnosis of incidental lesions in prevascular mediastinal.

GRAND SUPPORT

This study was sponsored by Natural Science Foundation of Shanghai (No. 21ZR1459700).

摘要

目的

旨在确定基于平扫 CT 的直方图分析是否可在鉴别前纵隔胸腺增生和囊肿(平均 CT 衰减值>10HU)与胸腺瘤和淋巴瘤方面发挥作用。

材料与方法

本回顾性研究纳入了 2013 年 12 月至 2020 年 8 月期间因前纵隔病变行平扫 CT 偶然发现且经病理或其他影像学检查明确诊断的连续无症状参与者。对每个病变的增强 CT 计算了 13 个直方图参数,然后在肿瘤(胸腺瘤+淋巴瘤)与非肿瘤(增生+囊肿)之间进行比较。通过接收者操作特征分析来研究直方图参数对识别肿瘤的性能。

结果

研究人群包括 192 名患者(106 名男性和 86 名女性),CT 检查时的平均年龄为 50.5 岁。其中 94 名患者有肿瘤(87 例胸腺瘤和 7 例淋巴瘤),98 名患者无肿瘤(48 例胸腺增生和 50 例囊肿)。两组间有 13 个直方图参数存在显著差异,包括中位数、最小值、范围、10%分位数、90%分位数、峰度、偏度、均匀性和熵。两组间平均 CT 衰减值无显著差异。较高的中位数被认为是区分肿瘤与非肿瘤的独立预测因子,可获得曲线下面积(AUC)为 0.785(95%置信区间[95%CI],0.720-0.841)。

结论

基于平扫 CT 的直方图分析可能有助于鉴别前纵隔意外病变。

资助

本研究得到上海市自然科学基金(No. 21ZR1459700)的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bab/10768309/be7acbb5e221/40644_2023_617_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验