Zhang Junfeng, Ma Bowen, Zou Weiwen
Opt Express. 2023 Dec 18;31(26):43920-43933. doi: 10.1364/OE.505520.
High-speed photonic reservoir computing (RC) has garnered significant interest in neuromorphic computing. However, existing reservoir layer (RL) architectures mostly rely on time-delayed feedback loops and use analog-to-digital converters for offline digital processing in the implementation of the readout layer, posing inherent limitations on their speed and capabilities. In this paper, we propose a non-feedback method that utilizes the pulse broadening effect induced by optical dispersion to implement a RL. By combining the multiplication of the modulator with the summation of the pulse temporal integration of the distributed feedback-laser diode, we successfully achieve the linear regression operation of the optoelectronic analog readout layer. Our proposed fully-analog feed-forward photonic RC (FF-PhRC) system is experimentally demonstrated to be effective in chaotic signal prediction, spoken digit recognition, and MNIST classification. Additionally, using wavelength-division multiplexing, our system manages to complete parallel tasks and improve processing capability up to 10 GHz per wavelength. The present work highlights the potential of FF-PhRC as a high-performance, high-speed computing tool for real-time neuromorphic computing.
高速光子储层计算(RC)在神经形态计算领域引起了广泛关注。然而,现有的储层层(RL)架构大多依赖延时反馈回路,并且在实现读出层时使用模数转换器进行离线数字处理,这对其速度和能力构成了固有限制。在本文中,我们提出了一种非反馈方法,该方法利用光色散引起的脉冲展宽效应来实现RL。通过将调制器的乘法与分布式反馈激光二极管的脉冲时间积分的求和相结合,我们成功实现了光电模拟读出层的线性回归运算。我们提出的全模拟前馈光子RC(FF-PhRC)系统在混沌信号预测、语音数字识别和MNIST分类方面的有效性得到了实验验证。此外,通过使用波分复用,我们的系统能够完成并行任务,并将处理能力提高到每波长10 GHz。目前的工作突出了FF-PhRC作为一种用于实时神经形态计算的高性能、高速计算工具的潜力。