Suppr超能文献

HTSplotter:一种用于化学和遗传体外扰动筛选的端到端数据处理、分析和可视化工具。

HTSplotter: An end-to-end data processing, analysis and visualisation tool for chemical and genetic in vitro perturbation screening.

机构信息

Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium.

Pediatric Precision Oncology Lab (PPOL), Cancer Research Institute Ghent (CRIG), Ghent, Belgium.

出版信息

PLoS One. 2024 Jan 5;19(1):e0296322. doi: 10.1371/journal.pone.0296322. eCollection 2024.

Abstract

In biomedical research, high-throughput screening is often applied as it comes with automatization, higher-efficiency, and more and faster results. High-throughput screening experiments encompass drug, drug combination, genetic perturbagen or a combination of genetic and chemical perturbagen screens. These experiments are conducted in real-time assays over time or in an endpoint assay. The data analysis consists of data cleaning and structuring, as well as further data processing and visualisation, which, due to the amount of data, can easily become laborious, time-consuming and error-prone. Therefore, several tools have been developed to aid researchers in this process, but these typically focus on specific experimental set-ups and are unable to process data of several time points and genetic-chemical perturbagen screens. To meet these needs, we developed HTSplotter, a web tool and Python module that performs automatic data analysis and visualization of visualization of eitherendpoint or real-time assays from different high-throughput screening experiments: drug, drug combination, genetic perturbagen and genetic-chemical perturbagen screens. HTSplotter implements an algorithm based on conditional statements to identify experiment types and controls. After appropriate data normalization, including growth rate normalization, HTSplotter executes downstream analyses such as dose-response relationship and drug synergism assessment by the Bliss independence (BI), Zero Interaction Potency (ZIP) and Highest Single Agent (HSA) methods. All results are exported as a text file and plots are saved in a PDF file. The main advantage of HTSplotter over other available tools is the automatic analysis of genetic-chemical perturbagen screens and real-time assays where growth rate and perturbagen effect results are plotted over time. In conclusion, HTSplotter allows for the automatic end-to-end data processing, analysis and visualisation of various high-throughput in vitro cell culture screens, offering major improvements in terms of versatility, efficiency and time over existing tools.

摘要

在生物医学研究中,高通量筛选通常被应用,因为它具有自动化、高效率和更快更多的结果。高通量筛选实验包括药物、药物组合、遗传扰动剂或遗传和化学扰动剂的组合筛选。这些实验在实时测定或终点测定中随时间进行。数据分析包括数据清理和结构化,以及进一步的数据处理和可视化,由于数据量很大,这很容易变得繁琐、耗时和容易出错。因此,已经开发了几种工具来帮助研究人员完成这个过程,但这些工具通常专注于特定的实验设置,无法处理多个时间点和遗传化学扰动剂筛选的数据。为了满足这些需求,我们开发了 HTSplotter,这是一个 Web 工具和 Python 模块,可自动分析和可视化来自不同高通量筛选实验的数据:药物、药物组合、遗传扰动剂和遗传化学扰动剂筛选。HTSplotter 实现了一种基于条件语句的算法,用于识别实验类型和对照。在适当的数据归一化后,包括生长速率归一化,HTSplotter 执行下游分析,如 Bliss 独立性 (BI)、零相互作用潜能 (ZIP) 和最高单剂 (HSA) 方法的剂量反应关系和药物协同作用评估。所有结果都以文本文件导出,图形保存为 PDF 文件。HTSplotter 相对于其他可用工具的主要优势在于遗传化学扰动剂筛选和实时测定的自动分析,其中生长速率和扰动剂效应结果随时间绘制。总之,HTSplotter 允许对各种高通量体外细胞培养筛选进行自动端到端数据处理、分析和可视化,在通用性、效率和时间方面相对于现有工具有了重大改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f20/10769073/06deece4916f/pone.0296322.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验