Suppr超能文献

用于神经母细胞瘤细胞迁移和增殖自动分析的大规模跟踪与分类,以及高通量筛选的实验优化。

Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells.

作者信息

Harder Nathalie, Batra Richa, Diessl Nicolle, Gogolin Sina, Eils Roland, Westermann Frank, König Rainer, Rohr Karl

机构信息

Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, BioQuant and Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120, Heidelberg, Germany.

Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.

出版信息

Cytometry A. 2015 Jun;87(6):524-40. doi: 10.1002/cyto.a.22632. Epub 2015 Jan 28.

Abstract

Computational approaches for automatic analysis of image-based high-throughput and high-content screens are gaining increased importance to cope with the large amounts of data generated by automated microscopy systems. Typically, automatic image analysis is used to extract phenotypic information once all images of a screen have been acquired. However, also in earlier stages of large-scale experiments image analysis is important, in particular, to support and accelerate the tedious and time-consuming optimization of the experimental conditions and technical settings. We here present a novel approach for automatic, large-scale analysis and experimental optimization with application to a screen on neuroblastoma cell lines. Our approach consists of cell segmentation, tracking, feature extraction, classification, and model-based error correction. The approach can be used for experimental optimization by extracting quantitative information which allows experimentalists to optimally choose and to verify the experimental parameters. This involves systematically studying the global cell movement and proliferation behavior. Moreover, we performed a comprehensive phenotypic analysis of a large-scale neuroblastoma screen including the detection of rare division events such as multi-polar divisions. Major challenges of the analyzed high-throughput data are the relatively low spatio-temporal resolution in conjunction with densely growing cells as well as the high variability of the data. To account for the data variability we optimized feature extraction and classification, and introduced a gray value normalization technique as well as a novel approach for automatic model-based correction of classification errors. In total, we analyzed 4,400 real image sequences, covering observation periods of around 120 h each. We performed an extensive quantitative evaluation, which showed that our approach yields high accuracies of 92.2% for segmentation, 98.2% for tracking, and 86.5% for classification.

摘要

用于基于图像的高通量和高内涵筛选自动分析的计算方法,对于处理自动显微镜系统生成的大量数据变得越来越重要。通常,一旦筛选的所有图像都已获取,就使用自动图像分析来提取表型信息。然而,在大规模实验的早期阶段,图像分析也很重要,特别是为了支持和加速实验条件和技术设置的繁琐且耗时的优化过程。我们在此提出一种用于自动大规模分析和实验优化的新方法,并将其应用于神经母细胞瘤细胞系的筛选。我们的方法包括细胞分割、跟踪、特征提取、分类和基于模型的错误校正。该方法可通过提取定量信息用于实验优化,这使实验人员能够最佳地选择和验证实验参数。这涉及系统地研究全局细胞运动和增殖行为。此外,我们对大规模神经母细胞瘤筛选进行了全面的表型分析,包括检测罕见的分裂事件,如多极分裂。所分析的高通量数据的主要挑战是相对较低的时空分辨率,以及细胞密集生长和数据的高变异性。为了考虑数据的变异性,我们优化了特征提取和分类,并引入了灰度值归一化技术以及一种基于模型自动校正分类错误的新方法。我们总共分析了4400个真实图像序列,每个序列的观察期约为120小时。我们进行了广泛的定量评估,结果表明我们的方法在分割方面的准确率高达92.2%,跟踪方面为98.2%,分类方面为86.5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验