Kopciuszyński Marek, Stȩpniak-Dybala Agnieszka, Zdyb Ryszard, Krawiec Mariusz
Institute of Physics, M. Curie-Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland.
Nano Lett. 2024 Feb 21;24(7):2175-2180. doi: 10.1021/acs.nanolett.3c04046. Epub 2024 Jan 5.
Silicene, a single layer of Si atoms, shares many remarkable electronic properties with graphene. So far, silicene has been synthesized in its epitaxial form on a few surfaces of solids. Thus, the problem of silicene-substrate interaction appears, which usually depresses the original electronic behavior but may trigger properties superior to those of bare components. We report the direct observation of robust Dirac-dispersed bands in epitaxial silicene grown on Au(111) films deposited on Si(111). By performing in-depth angle-resolved photoemission spectroscopy measurements, we reveal three pairs of one-dimensional bands with linear dispersion running in three different directions of an otherwise two-dimensional system. By combining these results with first-principles calculations, we explore the nature of these bands and point to strong interaction between subsystems forming a complex Si-Au heterostructure. These findings emphasize the essential role of interfacial coupling and open a unique materials platform for exploring exotic quantum phenomena and applications in future-generation nanoelectronics.
硅烯是由单层硅原子构成的,它与石墨烯具有许多显著的电子特性。到目前为止,硅烯已以外延形式在几种固体表面上合成。因此,出现了硅烯与衬底相互作用的问题,这通常会抑制原始的电子行为,但可能会引发优于裸组件的特性。我们报告了在沉积于Si(111)上的Au(111)薄膜上生长的外延硅烯中对稳健的狄拉克色散能带的直接观测。通过进行深入的角分辨光电子能谱测量,我们揭示了在原本二维系统的三个不同方向上具有线性色散的三对一维能带。通过将这些结果与第一性原理计算相结合,我们探索了这些能带的本质,并指出形成复杂Si-Au异质结构的子系统之间存在强相互作用。这些发现强调了界面耦合的重要作用,并为探索奇异量子现象以及在下一代纳米电子学中的应用开辟了一个独特的材料平台。