School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Structure. 2024 Jan 4;32(1):5-7. doi: 10.1016/j.str.2023.12.004.
In this issue of Structure, Heo and Feig present cg2all, a novel deep-learning model capable of efficiently predicting all-atom protein structures from coarse-grained (CG) representations. The model maintains high accuracy, even when the CG model is simplified to a single bead per residue, and has a number of promising applications.
在本期的《结构》杂志中,Heo 和 Feig 提出了 cg2all,这是一种新型的深度学习模型,能够从粗粒化(CG)表示中有效地预测全原子蛋白质结构。该模型即使将 CG 模型简化为每个残基一个珠子,也能保持很高的准确性,并且具有许多有前途的应用。