Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China.
Department of Pulmonary and Critical Care Medicine, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China.
Sci Rep. 2024 Jan 6;14(1):686. doi: 10.1038/s41598-024-51202-8.
High altitude exposure increases the risk of myocardial ischemia (MI) and subsequent cardiovascular death. Machine learning techniques have been used to develop cardiovascular disease prediction models, but no reports exist for high altitude induced myocardial ischemia. Our objective was to establish a machine learning-based MI prediction model and identify key risk factors. Using a prospective cohort study, a predictive model was developed and validated for high-altitude MI. We consolidated the health examination and self-reported electronic questionnaire data (collected between January and June 2022 in 920th Joint Logistic Support Force Hospital of china) of soldiers undergoing high-altitude training, along with the health examination and second self-reported electronic questionnaire data (collected between December 2022 and January 2023) subsequent to their completion on the plateau, into a unified dataset. Participants were subsequently allocated to either the training or test dataset in a 3:1 ratio using random assignment. A predictive model based on clinical features, physical examination, and laboratory results was designed using the training dataset, and the model's performance was evaluated using the area under the receiver operating characteristic curve score (AUC) in the test dataset. Using the training dataset (n = 2141), we developed a myocardial ischemia prediction model with high accuracy (AUC = 0.86) when validated on the test dataset (n = 714). The model was based on five laboratory results: Eosinophils percentage (Eos.Per), Globulin (G), Ca, Glucose (GLU), and Aspartate aminotransferase (AST). Our concise and accurate high-altitude myocardial ischemia incidence prediction model, based on five laboratory results, may be used to identify risks in advance and help individuals and groups prepare before entering high-altitude areas. Further external validation, including female and different age groups, is necessary.
高海拔暴露会增加心肌缺血(MI)和随后心血管死亡的风险。机器学习技术已被用于开发心血管疾病预测模型,但尚无针对高海拔引起的心肌缺血的报告。我们的目的是建立基于机器学习的 MI 预测模型并确定关键风险因素。
使用前瞻性队列研究,为高海拔 MI 建立并验证了预测模型。我们整合了健康检查和自我报告的电子问卷数据(于 2022 年 1 月至 6 月在中国 920 联合后勤支援部队医院收集),以及高原训练结束后士兵的健康检查和第二份自我报告的电子问卷数据(于 2022 年 12 月至 2023 年 1 月收集),并将其纳入统一数据集。然后,使用随机分配将参与者按照 3:1 的比例分配到训练或测试数据集。
使用训练数据集设计基于临床特征、体格检查和实验室结果的预测模型,并使用测试数据集的接收者操作特征曲线评分(AUC)评估模型的性能。使用训练数据集(n=2141),我们开发了一种具有高准确性的心肌缺血预测模型(AUC=0.86),在测试数据集(n=714)上进行验证。该模型基于五个实验室结果:嗜酸性粒细胞百分比(Eos.Per)、球蛋白(G)、Ca、葡萄糖(GLU)和天门冬氨酸氨基转移酶(AST)。
我们基于五个实验室结果建立了一种简洁准确的高海拔心肌缺血发生率预测模型,可用于提前识别风险,帮助个人和团体在进入高海拔地区之前做好准备。需要进一步进行外部验证,包括女性和不同年龄组。