Suppr超能文献

基于实际数据的具有卡普托分数阶导数的COVID-19 SIRD模型的数学分析

Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data.

作者信息

Nisar Kottakkaran Sooppy, Ahmad Shabir, Ullah Aman, Shah Kamal, Alrabaiah Hussam, Arfan Muhammad

机构信息

Department of Mathematics, College of Arts and Science, Wadi Aldawaser, 11991, Prince Sattam Bin Abdulaziz University, Saudi Arabia.

Department of Mathematics, University of Malakand, Chakdara, Dir(L), Khyber Pakhtunkhawa, Pakistan.

出版信息

Results Phys. 2021 Feb;21:103772. doi: 10.1016/j.rinp.2020.103772. Epub 2020 Dec 29.

Abstract

We discuss a fractional-order SIRD mathematical model of the COVID-19 disease in the sense of Caputo in this article. We compute the basic reproduction number through the next-generation matrix. We derive the stability results based on the basic reproduction number. We prove the results of the solution existence and uniqueness via fixed point theory. We utilize the fractional Adams-Bashforth method for obtaining the approximate solution of the proposed model. We illustrate the obtained numerical results in plots to show the COVID-19 transmission dynamics. Further, we compare our results with some reported real data against confirmed infected and death cases per day for the initial 67 days in Wuhan city.

摘要

在本文中,我们讨论了基于卡普托意义下的COVID-19疾病的分数阶SIRD数学模型。我们通过下一代矩阵计算基本再生数。我们基于基本再生数推导稳定性结果。我们通过不动点理论证明解的存在性和唯一性结果。我们利用分数阶亚当斯-巴什福思方法来获得所提出模型的近似解。我们在图表中展示所得到的数值结果,以呈现COVID-19的传播动态。此外,我们将我们的结果与一些报告的实际数据进行比较,这些数据是关于武汉市最初67天每天的确诊感染病例和死亡病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d2/7831877/f288d993d03f/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验