Nisar Kottakkaran Sooppy, Ahmad Shabir, Ullah Aman, Shah Kamal, Alrabaiah Hussam, Arfan Muhammad
Department of Mathematics, College of Arts and Science, Wadi Aldawaser, 11991, Prince Sattam Bin Abdulaziz University, Saudi Arabia.
Department of Mathematics, University of Malakand, Chakdara, Dir(L), Khyber Pakhtunkhawa, Pakistan.
Results Phys. 2021 Feb;21:103772. doi: 10.1016/j.rinp.2020.103772. Epub 2020 Dec 29.
We discuss a fractional-order SIRD mathematical model of the COVID-19 disease in the sense of Caputo in this article. We compute the basic reproduction number through the next-generation matrix. We derive the stability results based on the basic reproduction number. We prove the results of the solution existence and uniqueness via fixed point theory. We utilize the fractional Adams-Bashforth method for obtaining the approximate solution of the proposed model. We illustrate the obtained numerical results in plots to show the COVID-19 transmission dynamics. Further, we compare our results with some reported real data against confirmed infected and death cases per day for the initial 67 days in Wuhan city.
在本文中,我们讨论了基于卡普托意义下的COVID-19疾病的分数阶SIRD数学模型。我们通过下一代矩阵计算基本再生数。我们基于基本再生数推导稳定性结果。我们通过不动点理论证明解的存在性和唯一性结果。我们利用分数阶亚当斯-巴什福思方法来获得所提出模型的近似解。我们在图表中展示所得到的数值结果,以呈现COVID-19的传播动态。此外,我们将我们的结果与一些报告的实际数据进行比较,这些数据是关于武汉市最初67天每天的确诊感染病例和死亡病例。