Suppr超能文献

用于自动评估肿瘤基质中单一和数字多重免疫组织化学染色的数学建模与深度学习算法

Mathematical modelling and deep learning algorithms to automate assessment of single and digitally multiplexed immunohistochemical stains in tumoural stroma.

作者信息

Burrows Liam, Sculthorpe Declan, Zhang Hongrun, Rehman Obaid, Mukherjee Abhik, Chen Ke

机构信息

Department of Mathematical Sciences and Centre for Mathematical Imaging Techniques, University of Liverpool, Liverpool, United Kingdom.

Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.

出版信息

J Pathol Inform. 2023 Nov 19;15:100351. doi: 10.1016/j.jpi.2023.100351. eCollection 2024 Dec.

Abstract

Whilst automated analysis of immunostains in pathology research has focused predominantly on the epithelial compartment, automated analysis of stains in the stromal compartment is challenging and therefore requires time-consuming pathological input and guidance to adjust to tissue morphometry as perceived by pathologists. This study aimed to develop a robust method to automate stromal stain analyses using 2 of the commonest stromal stains (SMA and desmin) employed in clinical pathology practice as examples. An effective computational method capable of automatically assessing and quantifying tumour-associated stromal stains was developed and applied on cores of colorectal cancer tissue microarrays. The methodology combines both mathematical models and deep learning techniques with the former requiring no training data and the latter as many inputs as possible. The novel mathematical model was used to produce a digital double marker overlay allowing for fast automated digital multiplex analysis of stromal stains. The results show that deep learning methodologies in combination with mathematical modelling allow for an accurate means of quantifying stromal stains whilst also opening up new possibilities of digital multiplex analyses.

摘要

虽然病理学研究中免疫染色的自动化分析主要集中在上皮部分,但基质部分染色的自动化分析具有挑战性,因此需要耗费时间的病理学投入和指导,以适应病理学家所感知的组织形态测量。本研究旨在开发一种强大的方法,以临床病理实践中使用的两种最常见的基质染色(平滑肌肌动蛋白和结蛋白)为例,实现基质染色分析的自动化。开发了一种能够自动评估和量化肿瘤相关基质染色的有效计算方法,并将其应用于结直肠癌组织微阵列的芯块。该方法将数学模型和深度学习技术相结合,前者不需要训练数据,后者需要尽可能多的输入。这种新颖的数学模型用于生成数字双标记叠加图,从而实现基质染色的快速自动数字多重分析。结果表明,深度学习方法与数学建模相结合,能够提供一种准确的量化基质染色的方法,同时也为数字多重分析开辟了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验