Suppr超能文献

利用深度学习预测结直肠癌组织学切片的生存情况:一项回顾性多中心研究。

Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.

机构信息

Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.

German Cancer Consortium (DKTK), Heidelberg, Germany.

出版信息

PLoS Med. 2019 Jan 24;16(1):e1002730. doi: 10.1371/journal.pmed.1002730. eCollection 2019 Jan.

Abstract

BACKGROUND

For virtually every patient with colorectal cancer (CRC), hematoxylin-eosin (HE)-stained tissue slides are available. These images contain quantitative information, which is not routinely used to objectively extract prognostic biomarkers. In the present study, we investigated whether deep convolutional neural networks (CNNs) can extract prognosticators directly from these widely available images.

METHODS AND FINDINGS

We hand-delineated single-tissue regions in 86 CRC tissue slides, yielding more than 100,000 HE image patches, and used these to train a CNN by transfer learning, reaching a nine-class accuracy of >94% in an independent data set of 7,180 images from 25 CRC patients. With this tool, we performed automated tissue decomposition of representative multitissue HE images from 862 HE slides in 500 stage I-IV CRC patients in the The Cancer Genome Atlas (TCGA) cohort, a large international multicenter collection of CRC tissue. Based on the output neuron activations in the CNN, we calculated a "deep stroma score," which was an independent prognostic factor for overall survival (OS) in a multivariable Cox proportional hazard model (hazard ratio [HR] with 95% confidence interval [CI]: 1.99 [1.27-3.12], p = 0.0028), while in the same cohort, manual quantification of stromal areas and a gene expression signature of cancer-associated fibroblasts (CAFs) were only prognostic in specific tumor stages. We validated these findings in an independent cohort of 409 stage I-IV CRC patients from the "Darmkrebs: Chancen der Verhütung durch Screening" (DACHS) study who were recruited between 2003 and 2007 in multiple institutions in Germany. Again, the score was an independent prognostic factor for OS (HR 1.63 [1.14-2.33], p = 0.008), CRC-specific OS (HR 2.29 [1.5-3.48], p = 0.0004), and relapse-free survival (RFS; HR 1.92 [1.34-2.76], p = 0.0004). A prospective validation is required before this biomarker can be implemented in clinical workflows.

CONCLUSIONS

In our retrospective study, we show that a CNN can assess the human tumor microenvironment and predict prognosis directly from histopathological images.

摘要

背景

对于几乎每一位结直肠癌(CRC)患者,都可以获得苏木精-伊红(HE)染色的组织切片。这些图像包含定量信息,但通常不会用于客观提取预后生物标志物。在本研究中,我们研究了卷积神经网络(CNN)是否可以直接从这些广泛可用的图像中提取预后标志物。

方法和发现

我们在 86 张 CRC 组织切片中手动勾画单个组织区域,生成了超过 10 万个 HE 图像补丁,并使用这些图像通过迁移学习训练 CNN,在来自 25 名 CRC 患者的 7180 张独立图像数据集中达到了>94%的九分类准确率。使用此工具,我们对来自 500 名 I-IV 期 TCGA 队列 CRC 患者的 862 张 HE 切片中的代表性多组织 HE 图像进行了自动组织分解,这是一个大型国际多中心 CRC 组织集合。基于 CNN 中输出神经元的激活,我们计算了“深部基质评分”,这是多变量 Cox 比例风险模型(HR 95%置信区间[CI]:1.99 [1.27-3.12],p = 0.0028)中独立的总生存(OS)预后因素,而在同一队列中,基质区域的手动量化和癌症相关成纤维细胞(CAFs)的基因表达特征仅在特定肿瘤分期中具有预后意义。我们在 2003 年至 2007 年期间在德国多个机构招募的 409 名 I-IV 期 CRC 患者的 DACHS 研究独立队列中验证了这些发现。再次,该评分是 OS(HR 1.63 [1.14-2.33],p = 0.008)、CRC 特异性 OS(HR 2.29 [1.5-3.48],p = 0.0004)和无复发生存(RFS;HR 1.92 [1.34-2.76],p = 0.0004)的独立预后因素。在该生物标志物能够在临床工作流程中实施之前,需要进行前瞻性验证。

结论

在我们的回顾性研究中,我们表明 CNN 可以评估人类肿瘤微环境,并直接从组织病理学图像预测预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23d5/6345440/d4d4fa6412a1/pmed.1002730.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验