基于CT的影像组学列线图预测周围型T1期实性肺腺癌的脏层胸膜侵犯情况

CT-based radiomics nomogram for predicting visceral pleural invasion in peripheral T1-sized solid lung adenocarcinoma.

作者信息

Cai Xiaoting, Wang Ping, Zhou Huihui, Guo Hao, Yang Xinyu, Dai Zhengjun, Ma Heng

机构信息

School of Medical Imaging, Binzhou Medical University Yantai 264003, Shandong, China.

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University School of Medicine Yantai 264001, Shandong, China.

出版信息

Am J Cancer Res. 2023 Dec 15;13(12):5901-5913. eCollection 2023.

DOI:
Abstract

The preoperative assessment of visceral pleural invasion (VPI) in patients with early lung adenocarcinoma is vital for surgical treatment. This study aims to develop and validate a CT-based radiomics nomogram to predict VPI in peripheral T1-sized solid lung adenocarcinoma. A total of 203 patients were selected as subjects, and were divided into a training cohort (n=141; scanned with Brilliance iCT256, Brilliance 64, Somatom Force, and Optima CT660) and a test cohort (n=62; scanned with Somatom Definition AS+). Radiomics characteristics were extracted from CT images. Variance thresholding, SelectKBest, and least absolute shrinkage and selection operator (LASSO) method were applied to determine optimum characteristics to construct the radiomic signature (radscore). After multivariate logistic regression analysis, a nomogram was structured regarding clinical factors, conventional CT features, and radscore. The nomogram property was tested based on its area under the curve (AUC). The nomogram based on the radscore and two conventional CT features (tumor pleura relationship and lymph node enlargement) showed high discrimination with an AUC of 0.877 (95% CI: 0.820-0.935) and 0.837 (95% CI: 0.737-0.937) in the training and test cohorts, respectively. The calibration curve and decision curve analysis showed good consistency and high clinical value of the nomogram. In conclusion, The CT-based radiomics nomogram was helpful in predicting VPI in peripheral T1-sized solid lung adenocarcinoma.

摘要

早期肺腺癌患者的脏层胸膜侵犯(VPI)术前评估对手术治疗至关重要。本研究旨在开发并验证一种基于CT的影像组学列线图,以预测周围型T1大小实性肺腺癌的VPI。共选取203例患者作为研究对象,分为训练队列(n = 141;使用Brilliance iCT256、Brilliance 64、Somatom Force和Optima CT660进行扫描)和测试队列(n = 62;使用Somatom Definition AS+进行扫描)。从CT图像中提取影像组学特征。应用方差阈值法、SelectKBest法和最小绝对收缩和选择算子(LASSO)法确定构建影像组学特征(radscore)的最佳特征。经过多因素逻辑回归分析,构建了一个包含临床因素、传统CT特征和radscore的列线图。基于列线图的曲线下面积(AUC)对其性能进行测试。基于radscore和两个传统CT特征(肿瘤与胸膜关系和淋巴结肿大)构建的列线图在训练队列和测试队列中的辨别力较高,AUC分别为0.877(95%CI:0.820 - 0.935)和0.837(95%CI:0.737 - 0.937)。校准曲线和决策曲线分析显示列线图具有良好的一致性和较高的临床价值。总之,基于CT的影像组学列线图有助于预测周围型T1大小实性肺腺癌的VPI。

相似文献

本文引用的文献

[3]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索