Suppr超能文献

使用卷积神经网络提高荧光寿命成像显微镜相量精度。

Improving fluorescence lifetime imaging microscopy phasor accuracy using convolutional neural networks.

作者信息

Mannam Varun, P Brandt Jacob, Smith Cody J, Yuan Xiaotong, Howard Scott

机构信息

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, United States.

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.

出版信息

Front Bioinform. 2023 Dec 22;3:1335413. doi: 10.3389/fbinf.2023.1335413. eCollection 2023.

Abstract

Although a powerful biological imaging technique, fluorescence lifetime imaging microscopy (FLIM) faces challenges such as a slow acquisition rate, a low signal-to-noise ratio (SNR), and high cost and complexity. To address the fundamental problem of low SNR in FLIM images, we demonstrate how to use pre-trained convolutional neural networks (CNNs) to reduce noise in FLIM measurements. Our approach uses pre-learned models that have been previously validated on large datasets with different distributions than the training datasets, such as sample structures, noise distributions, and microscopy modalities in fluorescence microscopy, to eliminate the need to train a neural network from scratch or to acquire a large training dataset to denoise FLIM data. In addition, we are using the pre-trained networks in the inference stage, where the computation time is in milliseconds and accuracy is better than traditional denoising methods. To separate different fluorophores in lifetime images, the denoised images are then run through an unsupervised machine learning technique named "K-means clustering". The results of the experiments carried out on in vivo mouse kidney tissue, Bovine pulmonary artery endothelial (BPAE) fixed cells that have been fluorescently labeled, and mouse kidney fixed samples that have been fluorescently labeled show that our demonstrated method can effectively remove noise from FLIM images and improve segmentation accuracy. Additionally, the performance of our method on out-of-distribution highly scattering in vivo plant samples shows that it can also improve SNR in challenging imaging conditions. Our proposed method provides a fast and accurate way to segment fluorescence lifetime images captured using any FLIM system. It is especially effective for separating fluorophores in noisy FLIM images, which is common in in vivo imaging where averaging is not applicable. Our approach significantly improves the identification of vital biologically relevant structures in biomedical imaging applications.

摘要

尽管荧光寿命成像显微镜(FLIM)是一种强大的生物成像技术,但它面临着诸如采集速度慢、信噪比(SNR)低以及成本高和复杂性高等挑战。为了解决FLIM图像中信噪比低的根本问题,我们展示了如何使用预训练的卷积神经网络(CNN)来降低FLIM测量中的噪声。我们的方法使用预先学习的模型,这些模型先前已在与训练数据集具有不同分布的大型数据集上得到验证,例如荧光显微镜中的样本结构、噪声分布和显微镜模式,从而无需从头训练神经网络或获取大量训练数据集来对FLIM数据进行去噪。此外,我们在推理阶段使用预训练网络,此时计算时间以毫秒为单位,并且准确性优于传统去噪方法。为了在寿命图像中分离不同的荧光团,然后将去噪后的图像通过一种名为“K均值聚类”的无监督机器学习技术进行处理。对体内小鼠肾脏组织、已进行荧光标记的牛肺动脉内皮(BPAE)固定细胞以及已进行荧光标记的小鼠肾脏固定样本进行的实验结果表明,我们展示的方法可以有效地去除FLIM图像中的噪声并提高分割精度。此外,我们的方法在分布外高散射的体内植物样本上的性能表明,它在具有挑战性的成像条件下也可以提高信噪比。我们提出的方法提供了一种快速准确的方法来分割使用任何FLIM系统捕获的荧光寿命图像。它对于在噪声FLIM图像中分离荧光团特别有效,这在无法进行平均的体内成像中很常见。我们的方法显著提高了生物医学成像应用中重要生物相关结构的识别能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e80b/10770865/d2b54667d18d/fbinf-03-1335413-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验