Jing Changhong, Kuai Hongzhi, Matsumoto Hiroki, Yamaguchi Tomoharu, Liao Iman Yi, Wang Shuqiang
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan.
Brain Inform. 2024 Jan 8;11(1):1. doi: 10.1186/s40708-023-00216-5.
Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.
功能磁共振成像(fMRI)能够深入了解大脑功能变化的复杂模式,使其成为探索成瘾相关脑连接性的宝贵工具。然而,由于脑连接的复杂性和非线性性质,从fMRI数据中有效提取成瘾相关的脑连接性仍然具有挑战性。因此,本文提出了图扩散重建网络(GDRN),这是一个新颖的框架,旨在从成瘾大鼠获取的fMRI数据中捕捉成瘾相关的脑连接性。所提出的GDRN包含一个扩散重建模块,该模块通过重建训练样本有效地保持数据分布的统一性,从而增强模型重建尼古丁成瘾相关脑网络的能力。在尼古丁成瘾大鼠数据集上进行的实验评估表明,所提出的GDRN有效地探索了尼古丁成瘾相关的脑连接性。研究结果表明,GDRN有望利用fMRI数据揭示和理解成瘾背后的复杂神经机制。