IEEE Trans Med Imaging. 2020 Jul;39(7):2541-2552. doi: 10.1109/TMI.2020.2973650. Epub 2020 Feb 13.
Brain network provides essential insights in diagnosing many brain disorders. Integrative analysis of multiple types of connectivity, e.g, functional connectivity (FC) and structural connectivity (SC), can take advantage of their complementary information and therefore may help to identify patients. However, traditional brain network methods usually focus on either FC or SC for describing node interactions and only consider the interaction between paired network nodes. To tackle this problem, in this paper, we propose an Attention-Diffusion-Bilinear Neural Network (ADB-NN) framework for brain network analysis, which is trained in an end-to-end manner. The proposed network seamlessly couples FC and SC to learn wider node interactions and generates a joint representation of FC and SC for diagnosis. Specifically, a brain network (graph) is first defined, where each node corresponding to a brain region is governed by the features of brain activities (i.e., FC) extracted from functional magnetic resonance imaging (fMRI), and the presence of edges is determined by neural fiber physical connections (i.e., SC) extracted from Diffusion Tensor Imaging (DTI). Based on this graph, we train two Attention-Diffusion-Bilinear (ADB) modules jointly. In each module, an attention model is utilized to automatically learn the strength of node interactions. This information further guides a diffusion process that generates new node representations by considering the influence from other nodes as well. After that, the second-order statistics of these node representations are extracted by bilinear pooling to form connectivity-based features for disease prediction. The two ADB modules correspond to the one-step and two-step diffusion, respectively. Experiments on a real epilepsy dataset demonstrate the effectiveness and advantages of our proposed method.
脑网络为许多脑疾病的诊断提供了重要的见解。对多种连接类型(例如功能连接(FC)和结构连接(SC))进行综合分析,可以利用它们的互补信息,从而有助于识别患者。然而,传统的脑网络方法通常侧重于 FC 或 SC 来描述节点间的相互作用,并且只考虑成对网络节点之间的相互作用。为了解决这个问题,在本文中,我们提出了一种用于脑网络分析的注意力扩散双线性神经网络(ADB-NN)框架,该框架以端到端的方式进行训练。所提出的网络无缝地将 FC 和 SC 耦合在一起,以学习更广泛的节点间相互作用,并生成 FC 和 SC 的联合表示以进行诊断。具体来说,首先定义一个脑网络(图),其中每个对应于脑区的节点由从功能磁共振成像(fMRI)中提取的脑活动特征(即 FC)来支配,并且边缘的存在由从扩散张量成像(DTI)中提取的神经纤维物理连接(即 SC)来决定。基于此图,我们联合训练两个注意力扩散双线性(ADB)模块。在每个模块中,利用注意力模型自动学习节点间相互作用的强度。该信息进一步指导扩散过程,通过考虑来自其他节点的影响,生成新的节点表示。之后,通过双线性池化提取这些节点表示的二阶统计信息,以形成基于连接的特征用于疾病预测。这两个 ADB 模块分别对应于一步和两步扩散。在真实的癫痫数据集上的实验证明了我们提出的方法的有效性和优势。