Suppr超能文献

使用多目标进化算法进行蛋白质多种构象预测。

Protein Multiple Conformation Prediction Using Multi-Objective Evolution Algorithm.

机构信息

College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.

BioMap & MBZUAI, Beijing, 100038, China.

出版信息

Interdiscip Sci. 2024 Sep;16(3):519-531. doi: 10.1007/s12539-023-00597-5. Epub 2024 Jan 8.

Abstract

The breakthrough of AlphaFold2 and the publication of AlphaFold DB represent a significant advance in the field of predicting static protein structures. However, AlphaFold2 models tend to represent a single static structure, and multiple-conformation prediction remains a challenge. In this work, we proposed a method named MultiSFold, which uses a distance-based multi-objective evolutionary algorithm to predict multiple conformations. To begin, multiple energy landscapes are constructed using different competing constraints generated by deep learning. Subsequently, an iterative modal exploration and exploitation strategy is designed to sample conformations, incorporating multi-objective optimization, geometric optimization and structural similarity clustering. Finally, the final population is generated using a loop-specific sampling strategy to adjust the spatial orientations. MultiSFold was evaluated against state-of-the-art methods using a benchmark set containing 80 protein targets, each characterized by two representative conformational states. Based on the proposed metric, MultiSFold achieves a remarkable success ratio of 56.25% in predicting multiple conformations, while AlphaFold2 only achieves 10.00%, which may indicate that conformational sampling combined with knowledge gained through deep learning has the potential to generate conformations spanning the range between different conformational states. In addition, MultiSFold was tested on 244 human proteins with low structural accuracy in AlphaFold DB to test whether it could further improve the accuracy of static structures. The experimental results demonstrate the performance of MultiSFold, with a TM-score better than that of AlphaFold2 by 2.97% and RoseTTAFold by 7.72%. The online server is at http://zhanglab-bioinf.com/MultiSFold .

摘要

AlphaFold2 的突破和 AlphaFold DB 的发布代表了预测静态蛋白质结构领域的重大进展。然而,AlphaFold2 模型往往代表单个静态结构,而多构象预测仍然是一个挑战。在这项工作中,我们提出了一种名为 MultiSFold 的方法,该方法使用基于距离的多目标进化算法来预测多个构象。首先,使用深度学习生成的不同竞争约束来构建多个能量景观。随后,设计了一种迭代模态探索和利用策略来采样构象,结合多目标优化、几何优化和结构相似性聚类。最后,使用特定于环的采样策略生成最终种群,以调整空间方向。我们使用包含 80 个蛋白质靶标(每个靶标具有两个代表性构象状态)的基准集来评估 MultiSFold 与最先进方法的性能。基于所提出的度量标准,MultiSFold 在预测多个构象方面的成功率达到了 56.25%,而 AlphaFold2 的成功率仅为 10.00%,这可能表明构象采样与通过深度学习获得的知识相结合,具有生成跨越不同构象状态之间的构象的潜力。此外,我们还在 AlphaFold DB 中低结构精度的 244 个人类蛋白质上测试了 MultiSFold,以测试它是否可以进一步提高静态结构的准确性。实验结果证明了 MultiSFold 的性能,其 TM 评分比 AlphaFold2 高 2.97%,比 RoseTTAFold 高 7.72%。在线服务器位于 http://zhanglab-bioinf.com/MultiSFold。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验