Suppr超能文献

基于深度学习的域组装的域间距离预测。

Inter-domain distance prediction based on deep learning for domain assembly.

机构信息

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China.

出版信息

Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad100.

Abstract

AlphaFold2 achieved a breakthrough in protein structure prediction through the end-to-end deep learning method, which can predict nearly all single-domain proteins at experimental resolution. However, the prediction accuracy of full-chain proteins is generally lower than that of single-domain proteins because of the incorrect interactions between domains. In this work, we develop an inter-domain distance prediction method, named DeepIDDP. In DeepIDDP, we design a neural network with attention mechanisms, where two new inter-domain features are used to enhance the ability to capture the interactions between domains. Furthermore, we propose a data enhancement strategy termed DPMSA, which is employed to deal with the absence of co-evolutionary information on targets. We integrate DeepIDDP into our previously developed domain assembly method SADA, termed SADA-DeepIDDP. Tested on a given multi-domain benchmark dataset, the accuracy of SADA-DeepIDDP inter-domain distance prediction is 11.3% and 21.6% higher than trRosettaX and trRosetta, respectively. The accuracy of the domain assembly model is 2.5% higher than that of SADA. Meanwhile, we reassemble 68 human multi-domain protein models with TM-score ≤ 0.80 from the AlphaFold protein structure database, where the average TM-score is improved by 11.8% after the reassembly by our method. The online server is at http://zhanglab-bioinf.com/DeepIDDP/.

摘要

AlphaFold2 通过端到端深度学习方法在蛋白质结构预测方面取得了突破,几乎可以预测所有实验分辨率的单结构域蛋白。然而,由于结构域之间的错误相互作用,全链蛋白的预测准确性通常低于单结构域蛋白。在这项工作中,我们开发了一种结构域间距离预测方法,命名为 DeepIDDP。在 DeepIDDP 中,我们设计了一个带有注意力机制的神经网络,其中使用了两个新的结构域间特征来增强捕捉结构域之间相互作用的能力。此外,我们提出了一种称为 DPMSA 的数据增强策略,用于处理目标上缺乏共进化信息的问题。我们将 DeepIDDP 集成到我们之前开发的结构域组装方法 SADA 中,称为 SADA-DeepIDDP。在给定的多结构域基准数据集上进行测试,SADA-DeepIDDP 的结构域间距离预测精度比 trRosettaX 和 trRosetta 分别高 11.3%和 21.6%。结构域组装模型的精度比 SADA 高 2.5%。同时,我们从 AlphaFold 蛋白质结构数据库中重新组装了 68 个人类多结构域蛋白质模型,其中 TM-score≤0.80,使用我们的方法重新组装后平均 TM-score 提高了 11.8%。在线服务器位于 http://zhanglab-bioinf.com/DeepIDDP/。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验