Suppr超能文献

AlphaFold 2:为何它能奏效,及其对理解蛋白质序列、结构和功能关系的启示。

AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function.

机构信息

Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Twilight Design, 4 Adams Road, Kendall Park, New Jersey 08824, United States.

出版信息

J Chem Inf Model. 2021 Oct 25;61(10):4827-4831. doi: 10.1021/acs.jcim.1c01114. Epub 2021 Sep 29.

Abstract

AlphaFold 2 (AF2) was the star of CASP14, the last biannual structure prediction experiment. Using novel deep learning, AF2 predicted the structures of many difficult protein targets at or near experimental resolution. Here, we present our perspective of why AF2 works and show that it is a very sophisticated fold recognition algorithm that exploits the completeness of the library of single domain PDB structures. It has also learned local side chain packing rearrangements that enable it to refine proteins to high resolution. The benefits and limitations of its ability to predict the structures of many more proteins at or close to atomic detail are discussed.

摘要

AlphaFold 2(AF2)是 CASP14 的明星,这是最后一次两年一次的结构预测实验。使用新的深度学习,AF2 预测了许多具有实验分辨率或接近实验分辨率的困难蛋白靶标的结构。在这里,我们提出了为什么 AF2 起作用的观点,并表明它是一种非常复杂的折叠识别算法,利用了单域 PDB 结构库的完整性。它还学习了局部侧链包装的重新排列,使其能够将蛋白质精修到高分辨率。讨论了它能够预测更多具有原子细节的蛋白质结构的能力的优势和局限性。

相似文献

2
Applying and improving AlphaFold at CASP14.应用和改进 AlphaFold 参加 CASP14。
Proteins. 2021 Dec;89(12):1711-1721. doi: 10.1002/prot.26257.
4
AlphaFold and Implications for Intrinsically Disordered Proteins.AlphaFold 及其对无序蛋白质的影响。
J Mol Biol. 2021 Oct 1;433(20):167208. doi: 10.1016/j.jmb.2021.167208. Epub 2021 Aug 18.
6
The AlphaFold Database of Protein Structures: A Biologist's Guide.蛋白质结构的AlphaFold数据库:生物学家指南
J Mol Biol. 2022 Jan 30;434(2):167336. doi: 10.1016/j.jmb.2021.167336. Epub 2021 Oct 29.
8
Collective Variable for Metadynamics Derived From AlphaFold Output.源自AlphaFold输出的元动力学集体变量。
Front Mol Biosci. 2022 Jun 13;9:878133. doi: 10.3389/fmolb.2022.878133. eCollection 2022.

引用本文的文献

10
Cutting-edge deep-learning based tools for metagenomic research.用于宏基因组学研究的前沿深度学习工具。
Natl Sci Rev. 2025 Feb 19;12(6):nwaf056. doi: 10.1093/nsr/nwaf056. eCollection 2025 Jun.

本文引用的文献

4
Highly accurate protein structure prediction for the human proteome.高精准度的人类蛋白质组蛋白结构预测。
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.
7
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
9
FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.FRAGSITE:基于片段的虚拟配体筛选方法。
J Chem Inf Model. 2021 Apr 26;61(4):2074-2089. doi: 10.1021/acs.jcim.0c01160. Epub 2021 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验