Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.
National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2308114120. doi: 10.1073/pnas.2308114120. Epub 2024 Jan 8.
Abundant epidemiological evidence links circadian rhythms to human health, from heart disease to neurodegeneration. Accurate determination of an individual's circadian phase is critical for precision diagnostics and personalized timing of therapeutic interventions. To date, however, we still lack an assay for physiological time that is accurate, minimally burdensome to the patient, and readily generalizable to new data. Here, we present TimeMachine, an algorithm to predict the human circadian phase using gene expression in peripheral blood mononuclear cells from a single blood draw. Once trained on data from a single study, we validated the trained predictor against four independent datasets with distinct experimental protocols and assay platforms, demonstrating that it can be applied generalizably. Importantly, TimeMachine predicted circadian time with a median absolute error ranging from 1.65 to 2.7 h, regardless of systematic differences in experimental protocol and assay platform, without renormalizing the data or retraining the predictor. This feature enables it to be flexibly applied to both new samples and existing data without limitations on the transcriptomic profiling technology (microarray, RNAseq). We benchmark TimeMachine against competing approaches and identify the algorithmic features that contribute to its performance.
大量的流行病学证据将昼夜节律与人类健康联系起来,从心脏病到神经退行性疾病。准确确定个体的昼夜节律相位对于精确诊断和治疗干预的个性化时间安排至关重要。然而,迄今为止,我们仍然缺乏一种准确、对患者负担最小、易于推广到新数据的生理时间测定方法。在这里,我们提出了 TimeMachine,这是一种使用单采外周血单核细胞中的基因表达来预测人类昼夜节律相位的算法。在单个研究的数据上进行训练后,我们针对具有不同实验方案和检测平台的四个独立数据集验证了训练有素的预测器,证明它可以广泛应用。重要的是,无论实验方案和检测平台是否存在系统差异,TimeMachine 预测昼夜节律时间的中位数绝对误差范围为 1.65 至 2.7 小时,无需对数据进行重新归一化或重新训练预测器。该功能使其能够灵活地应用于新样本和现有数据,而不受转录组谱分析技术(微阵列、RNAseq)的限制。我们将 TimeMachine 与竞争方法进行基准测试,并确定了对其性能有贡献的算法特征。