Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.
Nat Biotechnol. 2022 Sep;40(9):1349-1359. doi: 10.1038/s41587-022-01273-7. Epub 2022 May 2.
Many spatially resolved transcriptomic technologies do not have single-cell resolution but measure the average gene expression for each spot from a mixture of cells of potentially heterogeneous cell types. Here, we introduce a deconvolution method, conditional autoregressive-based deconvolution (CARD), that combines cell-type-specific expression information from single-cell RNA sequencing (scRNA-seq) with correlation in cell-type composition across tissue locations. Modeling spatial correlation allows us to borrow the cell-type composition information across locations, improving accuracy of deconvolution even with a mismatched scRNA-seq reference. CARD can also impute cell-type compositions and gene expression levels at unmeasured tissue locations to enable the construction of a refined spatial tissue map with a resolution arbitrarily higher than that measured in the original study and can perform deconvolution without an scRNA-seq reference. Applications to four datasets, including a pancreatic cancer dataset, identified multiple cell types and molecular markers with distinct spatial localization that define the progression, heterogeneity and compartmentalization of pancreatic cancer.
许多空间分辨转录组学技术没有单细胞分辨率,而是测量来自潜在异质细胞类型混合物的每个点的平均基因表达。在这里,我们引入了一种去卷积方法,基于条件自回归的去卷积(CARD),它将单细胞 RNA 测序(scRNA-seq)的细胞类型特异性表达信息与组织位置之间细胞类型组成的相关性相结合。建模空间相关性允许我们在位置之间借用细胞类型组成信息,即使使用不匹配的 scRNA-seq 参考,也能提高去卷积的准确性。CARD 还可以推断未测量组织位置的细胞类型组成和基因表达水平,从而能够构建具有任意高于原始研究中测量分辨率的精细空间组织图谱,并能够在没有 scRNA-seq 参考的情况下进行去卷积。对四个数据集的应用,包括胰腺癌数据集,鉴定了多个具有不同空间定位的细胞类型和分子标记,这些标记定义了胰腺癌的进展、异质性和区室化。