Suppr超能文献

一种基于免疫细胞乳酸化失调的新型、快速且实用的脓毒症患者预后模型。

A novel, rapid, and practical prognostic model for sepsis patients based on dysregulated immune cell lactylation.

作者信息

Li Chang, He Mei, Shi PeiChi, Yao Lu, Fang XiangZhi, Li XueFeng, Li QiLan, Yang XiaoBo, Xu JiQian, Shang You

机构信息

Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Hubei JiangXia Laboratory, Wuhan, Hubei, China.

出版信息

Front Immunol. 2025 Jun 19;16:1625311. doi: 10.3389/fimmu.2025.1625311. eCollection 2025.

Abstract

BACKGROUND

Sepsis is a global health burden characterized by high heterogeneity and uncontrolled immune response, with a notable lack of reliable methods for early prognosis and risk stratification. Epigenetic modifications, particularly lactylation, have recently emerged as key regulators in the early pathophysiology of sepsis. However, their potential for immune-related mortality risk stratification remains largely unexplored. This study aimed to investigate dynamic changes in lactylation during sepsis progression and to develop a rapid, lactylation-based prognostic signature.

METHODS

Blood transcriptional profiles and single-cell RNA sequencing data from septic patients were analyzed to assess glycolytic activity and lactylation in relation to patient mortality. Patients were stratified into subgroups using k-means clustering based on lactylation levels. Machine learning algorithms, integrated with pseudotime trajectory reconstruction, were employed to map the temporal dynamics of lactylation. A prognostic model was then constructed using lactylation-associated hub genes and validated in external transcriptomic datasets, a prospective single-center clinical cohort. The underlying mechanism was further explored using human monocytes.

RESULTS

The study systematically characterized the dynamic alterations in lactylation patterns and immune microenvironment across distinct patient clusters. A lactylation-based prognostic model was developed, comprising eight key genes (CD160, HELB, ING4, PIP5K1C, SRPRA, CDCA7, FAM3A, PPP1R15A), and demonstrated strong predictive performance for sepsis outcomes (AUC = 0.78 in the training cohort; AUC = 0.73 in the validation cohort). Temporal expression patterns of lactylation-related hub genes revealed dynamic immune responses throughout disease progression. In the prospective cohort of septic patients (N = 51), the model showed high predictive accuracy for survival, with AUCs of 0.82 (7-day), 0.80 (14-day), and 0.86 (28-day). Additionally, global lactylation levels were significantly elevated in THP-1 cells following treatment with Sephin1, a selective PPP1R15A inhibitor, suggesting a mechanistic link.

CONCLUSIONS

Lactylation is significantly associated with increased mortality risk in sepsis. The proposed individualized prognostic model, based on dysregulated immune cell metabolism, accurately predicts early mortality and may inform optimized clinical management of septic patients.

摘要

背景

脓毒症是一种全球健康负担,具有高度异质性和不受控制的免疫反应,明显缺乏可靠的早期预后和风险分层方法。表观遗传修饰,特别是乳酸化,最近已成为脓毒症早期病理生理学的关键调节因子。然而,它们在免疫相关死亡风险分层方面的潜力在很大程度上仍未得到探索。本研究旨在调查脓毒症进展过程中乳酸化的动态变化,并开发一种基于乳酸化的快速预后特征。

方法

分析脓毒症患者的血液转录谱和单细胞RNA测序数据,以评估糖酵解活性和乳酸化与患者死亡率的关系。根据乳酸化水平,使用k均值聚类将患者分层为亚组。采用机器学习算法,并结合伪时间轨迹重建,来描绘乳酸化的时间动态。然后使用与乳酸化相关的枢纽基因构建一个预后模型,并在外部转录组数据集(一个前瞻性单中心临床队列)中进行验证。使用人类单核细胞进一步探索其潜在机制。

结果

该研究系统地描述了不同患者群体中乳酸化模式和免疫微环境的动态变化。开发了一种基于乳酸化的预后模型,该模型包含八个关键基因(CD160、HELB、ING4、PIP5K1C、SRPRA、CDCA7、FAM3A、PPP1R15A),并对脓毒症结局表现出强大的预测性能(训练队列中的AUC = 0.78;验证队列中的AUC = 0.73)。乳酸化相关枢纽基因的时间表达模式揭示了疾病进展过程中的动态免疫反应。在脓毒症患者的前瞻性队列(N = 51)中,该模型对生存具有较高的预测准确性,7天、14天和28天生存率的AUC分别为0.82、0.80和0.86。此外,用选择性PPP1R15A抑制剂Sephin1处理后,THP-1细胞中的整体乳酸化水平显著升高,提示存在机制联系。

结论

乳酸化与脓毒症死亡率风险增加显著相关。所提出的基于免疫细胞代谢失调的个体化预后模型能够准确预测早期死亡率,并可能为脓毒症患者的优化临床管理提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f7/12221935/3902eaccb1be/fimmu-16-1625311-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验