Suppr超能文献

基于脑电数据的混合深度学习架构在识别强迫症个体中的应用。

Application of Hybrid DeepLearning Architectures for Identification of Individuals with Obsessive Compulsive Disorder Based on EEG Data.

机构信息

Department of Neuroscience, Uskudar University, Istanbul, Turkey.

Department of Psychiatry, Uskudar University, Istanbul, Turkey.

出版信息

Clin EEG Neurosci. 2024 Sep;55(5):543-552. doi: 10.1177/15500594231222980. Epub 2024 Jan 9.

Abstract

Obsessive-compulsive disorder (OCD) is a highly common psychiatric disorder. The symptoms of this condition overlap and co-occur with those of other psychiatric illnesses, making diagnosis difficult. The availability of biomarkers could be useful for aiding in diagnosis, although prior neuroimaging studies were unable to provide such biomarkers. In this study, patients with OCD were classified from healthy controls using 2 different hybrid deep learning models: one-dimensional convolutional neural networks (1DCNN) together with long-short term memory (LSTM) and gradient recurrent units (GRU), respectively. Both models exhibited exceptional classification accuracies in cross-validation and external validation phases. The mean classification accuracies in the cross-validation stage were 90.88% and 85.91% for the 1DCNN-LSTM and 1DCNN-GRU models, respectively. The inferior frontal, temporal, and occipital electrodes were predominant in providing discriminative features. Our findings underscore the potential of hybrid deep learning architectures utilizing EEG data to effectively differentiate patients with OCD from healthy controls. This promising approach holds implications for advancing clinical decision-making by offering valuable insights into diagnostic markers for OCD.

摘要

强迫症(OCD)是一种非常常见的精神疾病。这种疾病的症状与其他精神疾病的症状重叠和同时发生,这使得诊断变得困难。生物标志物的可用性可能有助于辅助诊断,尽管先前的神经影像学研究未能提供此类生物标志物。在这项研究中,使用两种不同的混合深度学习模型(一维卷积神经网络(1DCNN)分别与长短时记忆(LSTM)和梯度递归单元(GRU)相结合)对 OCD 患者与健康对照组进行分类。这两种模型在交叉验证和外部验证阶段均表现出出色的分类准确性。在交叉验证阶段,1DCNN-LSTM 和 1DCNN-GRU 模型的平均分类准确率分别为 90.88%和 85.91%。下额、颞叶和枕叶电极在提供判别特征方面具有优势。我们的研究结果强调了利用 EEG 数据的混合深度学习架构有效区分 OCD 患者与健康对照组的潜力。这种有前途的方法通过为 OCD 的诊断标志物提供有价值的见解,为推进临床决策提供了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验