State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Adv Sci (Weinh). 2024 Mar;11(11):e2304548. doi: 10.1002/advs.202304548. Epub 2024 Jan 9.
Understanding the phenotypic heterogeneity of antibiotic-resistant bacteria following treatment and the transitions between different phenotypes is crucial for developing effective infection control strategies. The study expands upon previous work by explicating chloramphenicol-induced phenotypic heterogeneities in growth rate, gene expression, and morphology of resistant Escherichia coli using time-lapse microscopy. Correlating the bacterial growth rate and cspC expression, four interchangeable phenotypic subpopulations across varying antibiotic concentrations are identified, surpassing the previously described growth rate bistability. Notably, bacterial cells exhibiting either fast or slow growth rates can concurrently harbor subpopulations characterized by high and low gene expression levels, respectively. To elucidate the mechanisms behind this enhanced heterogeneity, a concise gene expression network model is proposed and the biological significance of the four phenotypes is further explored. Additionally, by employing Hidden Markov Model fitting and integrating the non-equilibrium landscape and flux theory, the real-time data encompassing diverse bacterial traits are analyzed. This approach reveals dynamic changes and switching kinetics in different cell fates, facilitating the quantification of observable behaviors and the non-equilibrium dynamics and thermodynamics at play. The results highlight the multi-dimensional heterogeneous behaviors of antibiotic-resistant bacteria under antibiotic stress, providing new insights into the compromised antibiotic efficacy, microbial response, and associated evolution processes.
理解抗生素耐药菌在治疗后的表型异质性以及不同表型之间的转变,对于制定有效的感染控制策略至关重要。本研究通过使用时相差显微镜阐明了氯霉素诱导的耐药大肠杆菌生长速度、基因表达和形态的表型异质性,扩展了之前的工作。通过将细菌生长速度和 cspC 表达相关联,在不同抗生素浓度下鉴定出了四种可互换的表型亚群,超过了先前描述的生长速度双稳定性。值得注意的是,表现出快速或慢速生长速度的细菌细胞可以同时具有高和低基因表达水平的亚群。为了阐明这种增强的异质性背后的机制,提出了一个简洁的基因表达网络模型,并进一步探索了四种表型的生物学意义。此外,通过采用隐马尔可夫模型拟合,并整合非平衡景观和通量理论,对包含多种细菌特征的实时数据进行了分析。这种方法揭示了不同细胞命运中的动态变化和转换动力学,促进了可观察行为以及发挥作用的非平衡动力学和热力学的量化。研究结果突出了抗生素应激下抗生素耐药菌的多维异质行为,为受损的抗生素疗效、微生物反应和相关进化过程提供了新的见解。