Basarrate Sophia, Monzel Anna S, Smith Janell L M, Marsland Anna L, Trumpff Caroline, Picard Martin
From the Division of Behavioral Medicine, Department of Psychiatry (Basarrate, Monzel, Smith, Trumpff, Picard), Columbia University Irving Medical Center, New York, New York; Department of Psychology (Marsland), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative (Picard), Columbia University Irving Medical Center; and New York State Psychiatric Institute (Picard), New York, New York.
Psychosom Med. 2024;86(2):89-98. doi: 10.1097/PSY.0000000000001275. Epub 2024 Jan 8.
Psychosocial stress is transduced into disease risk through energy-dependent release of hormones from the hypothalamic-pituitary-adrenal and sympathetic-adrenal-medullary axes. The levels of glucocorticoid and adrenergic hormones, together with the sensitivity of tissues to their signaling, define stress responses. To understand existing pathways responsible for the psychobiological transduction of stressful experiences, we provide a quantitative whole-body map of glucocorticoid and adrenergic receptor (AR) expression.
We systematically examined gene expression levels for the glucocorticoid receptor (GR), α- and β-ARs (AR-α1B, AR-α2B AR-β2, and AR-β3), across 55 different organs using the Human Protein Atlas and Human Proteome Map datasets. Given that mitochondria produce the energy required to respond to stress, we leveraged the Human Protein Atlas and MitoCarta3.0 data to examine the link between stress hormone receptor density and mitochondrial gene expression. Finally, we tested the functional interplay between GR activation and AR expression in human fibroblast cells.
The GR was expressed ubiquitously across all investigated organ systems, whereas AR subtypes showed lower and more localized expression patterns. Receptor co-regulation, meaning the correlated gene expression of multiple stress hormone receptors, was found between GR and AR-α1B, as well as between AR-α1B and AR-α2B. In cultured human fibroblasts, activating the GR selectively increased AR-β2 and AR-α1B expression. Consistent with the known energetic cost of stress responses, GR and AR expressions were positively associated with the expression of specific mitochondrial pathways.
Our results provide a cartography of GR and AR expression across the human body. Because stress-induced GR and AR signaling triggers energetically expensive cellular pathways involving energy-transforming mitochondria, the tissue-specific expression and co-expression patterns of hormone receptor subtypes may in part determine the resilience or vulnerability of different organ systems.
心理社会应激通过下丘脑 - 垂体 - 肾上腺轴和交感 - 肾上腺 - 髓质轴激素的能量依赖性释放转化为疾病风险。糖皮质激素和肾上腺素能激素的水平,以及组织对其信号的敏感性,决定了应激反应。为了解负责应激经历心理生物学转化的现有途径,我们提供了糖皮质激素和肾上腺素能受体(AR)表达的定量全身图谱。
我们使用人类蛋白质图谱和人类蛋白质组图谱数据集,系统地检查了55个不同器官中糖皮质激素受体(GR)、α和β肾上腺素能受体(AR-α1B、AR-α2B、AR-β2和AR-β3)的基因表达水平。鉴于线粒体产生应对应激所需的能量,我们利用人类蛋白质图谱和MitoCarta3.0数据来研究应激激素受体密度与线粒体基因表达之间的联系。最后,我们在人成纤维细胞中测试了GR激活与AR表达之间的功能相互作用。
GR在所有研究的器官系统中普遍表达,而AR亚型的表达较低且更具局限性。在GR和AR-α1B之间,以及AR-α1B和AR-α2B之间发现了受体共同调节,即多种应激激素受体的相关基因表达。在培养的人成纤维细胞中,激活GR选择性地增加AR-β2和AR-α1B的表达。与已知的应激反应能量消耗一致,GR和AR的表达与特定线粒体途径的表达呈正相关。
我们的结果提供了人体GR和AR表达的图谱。由于应激诱导的GR和AR信号触发了涉及能量转换线粒体的高能量消耗细胞途径,激素受体亚型的组织特异性表达和共表达模式可能部分决定了不同器官系统的恢复力或易损性。