Suppr超能文献

利用真菌进行高性能工程复合材料的生物制造。

High-Performance Engineered Composites Biofabrication Using Fungi.

机构信息

MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China.

Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, P. R. China.

出版信息

Small. 2024 Jun;20(25):e2309171. doi: 10.1002/smll.202309171. Epub 2024 Jan 9.

Abstract

Various natural polymers offer sustainable alternatives to petroleum-based adhesives, enabling the creation of high-performance engineered materials. However, additional chemical modifications and complicated manufacturing procedures remain unavoidable. Here, a sustainable high-performance engineered composite that benefits from bonding strategies with multiple energy dissipation mechanisms dominated by chemical adhesion and mechanical interlocking is demonstrated via the fungal smart creative platform. Chemical adhesion is predominantly facilitated by the extracellular polymeric substrates and glycosylated proteins present in the fungal outer cell walls. The dynamic feature of non-covalent interactions represented by hydrogen bonding endows the composite with extensive unique properties including healing, recyclability, and scalable manufacturing. Mechanical interlocking involves multiple mycelial networks (elastic modulus of 2.8 GPa) binding substrates, and the fungal inner wall skeleton composed of chitin and β-glucan imparts product stability. The physicochemical properties of composite (modulus of elasticity of 1455.3 MPa, internal bond strength of 0.55 MPa, hardness of 82.8, and contact angle of 110.2°) are comparable or even superior to those of engineered lignocellulosic materials created using petroleum-based polymers or bioadhesives. High-performance composite biofabrication using fungi may inspire the creation of other sustainable engineered materials with the assistance of the extraordinary capabilities of living organisms.

摘要

各种天然聚合物为基于石油的粘合剂提供了可持续的替代品,使高性能工程材料的制造成为可能。然而,额外的化学修饰和复杂的制造程序仍然是不可避免的。在这里,通过真菌智能创新平台展示了一种受益于具有多种能量耗散机制的键合策略的可持续高性能工程复合材料,这些机制主要由化学粘附和机械互锁主导。化学粘附主要由真菌细胞壁外存在的细胞外聚合物基质和糖基化蛋白促进。由氢键代表的非共价相互作用的动态特性赋予复合材料广泛的独特性能,包括修复、可回收性和可扩展性制造。机械互锁涉及多个菌丝网络(弹性模量为 2.8 GPa)与基质结合,由几丁质和β-葡聚糖组成的真菌内壁骨架赋予产品稳定性。复合材料的物理化学性质(弹性模量为 1455.3 MPa,内结合强度为 0.55 MPa,硬度为 82.8,接触角为 110.2°)与使用石油基聚合物或生物粘合剂制造的工程木质纤维素材料相当,甚至更优。真菌的高性能复合材料生物制造可能会激发其他使用生物体非凡能力制造的可持续工程材料的出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验