Suppr超能文献

用于热管理的具有分级多孔结构的菌丝体复合材料

Mycelium Composite with Hierarchical Porous Structure for Thermal Management.

作者信息

Zhang Mingchang, Xue Jing, Zhang Runhua, Zhang Wenliang, Peng Yao, Wang Mingzhi, Cao Jinzhen

机构信息

MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China.

出版信息

Small. 2023 Nov;19(46):e2302827. doi: 10.1002/smll.202302827. Epub 2023 Jul 4.

Abstract

High-performance porous materials with a low carbon footprint provide sustainable alternatives to petroleum-based lightweight foams and can help meet carbon neutrality goals. However, these materials generally face a trade-off between thermal management capabilities and structural strength. Here, a mycelium composite with a hierarchical porous structure, including both macro- and microscale pores, produced from multiple and advanced mycelial networks (elastic modulus of 1.2 GPa) binding loosely distributed sawdust is demonstrated. The morphological, biological, and physicochemical properties of the filamentous mycelium and composites are discussed in terms of how they are influenced by the mycelial system of the fungi and the way they interact with the substrate. The composite shows a porosity of 0.94, a noise reduction coefficient of 0.55 at a frequency range of 250-3000 Hz (for a 15 mm thick sample), a thermal conductivity of 0.042 W m  K , and an energy absorption of 18 kJ m at 50% strain. It is also hydrophobic, repairable, and recyclable. It is expected that the hierarchical porous structural composite with excellent thermal and mechanical properties can make a significant impact on the future development of highly sustainable alternatives to lightweight plastic foams.

摘要

具有低碳足迹的高性能多孔材料为石油基轻质泡沫提供了可持续的替代品,并有助于实现碳中和目标。然而,这些材料通常在热管理能力和结构强度之间面临权衡。在此,展示了一种具有分级多孔结构的菌丝体复合材料,该结构包括宏观和微观尺度的孔隙,由多个先进的菌丝网络(弹性模量为1.2吉帕)结合松散分布的锯末制成。从丝状菌丝体和复合材料的形态、生物学和物理化学性质受真菌菌丝体系统的影响方式以及它们与底物的相互作用方式进行了讨论。该复合材料的孔隙率为0.94,在250 - 3000赫兹频率范围内(对于15毫米厚的样品)的降噪系数为0.55,热导率为0.042瓦每米开尔文,在50%应变下的能量吸收为18千焦每平方米。它还具有疏水性、可修复性和可回收性。预计这种具有优异热性能和机械性能的分级多孔结构复合材料将对轻质塑料泡沫的高度可持续替代品的未来发展产生重大影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验