Pohl Carsten, Schmidt Bertram, Nunez Guitar Tamara, Klemm Sophie, Gusovius Hans-Jörg, Platzk Stefan, Kruggel-Emden Harald, Klunker Andre, Völlmecke Christina, Fleck Claudia, Meyer Vera
Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Str. des 17. Juni 135, 10623, Berlin, Germany.
Chair of Materials Science and Engineering, Technische Universität Berlin, Str. des 17. Juni 135, 10623, Berlin, Germany.
Fungal Biol Biotechnol. 2022 Feb 24;9(1):4. doi: 10.1186/s40694-022-00133-y.
Filamentous fungi of the phylum Basidiomycota are considered as an attractive source for the biotechnological production of composite materials. The ability of many basidiomycetes to accept residual lignocellulosic plant biomass from agriculture and forestry such as straw, shives and sawdust as substrates and to bind and glue together these otherwise loose but reinforcing substrate particles into their mycelial network, makes them ideal candidates to produce biological composites to replace petroleum-based synthetic plastics and foams in the near future.
Here, we describe for the first time the application potential of the tinder fungus Fomes fomentarius for lab-scale production of mycelium composites. We used fine, medium and coarse particle fractions of hemp shives and rapeseed straw to produce a set of diverse composite materials and show that the mechanical materials properties are dependent on the nature and particle size of the substrates. Compression tests and scanning electron microscopy were used to characterize composite material properties and to model their compression behaviour by numerical simulations. Their properties were compared amongst each other and with the benchmark expanded polystyrene (EPS), a petroleum-based foam used for thermal isolation in the construction industry. Our analyses uncovered that EPS shows an elastic modulus of 2.37 ± 0.17 MPa which is 4-times higher compared to the F. fomentarius composite materials whereas the compressive strength of 0.09 ± 0.003 MPa is in the range of the fungal composite material. However, when comparing the ability to take up compressive forces at higher strain values, the fungal composites performed better than EPS. Hemp-shive based composites were able to resist a compressive force of 0.2 MPa at 50% compression, rapeseed composites 0.3 MPa but EPS only 0.15 MPa.
The data obtained in this study suggest that F. fomentarius constitutes a promising cell factory for the future production of fungal composite materials with similar mechanical behaviour as synthetic foams such as EPS. Future work will focus on designing materials characteristics through optimizing substrate properties, cultivation conditions and by modulating growth and cell wall composition of F. fomentarius, i.e. factors that contribute on the meso- and microscale level to the composite behaviour.
担子菌门的丝状真菌被认为是生物技术生产复合材料的一个有吸引力的来源。许多担子菌能够将农业和林业中残留的木质纤维素植物生物质(如稻草、木片和锯末)作为底物,并将这些原本松散但具有增强作用的底物颗粒结合并胶合到它们的菌丝网络中,这使得它们成为在不久的将来生产生物复合材料以替代石油基合成塑料和泡沫的理想候选者。
在此,我们首次描述了火木层孔菌在实验室规模生产菌丝体复合材料方面的应用潜力。我们使用了大麻木片和油菜秸秆的细、中、粗颗粒级分来生产一组不同的复合材料,并表明机械材料性能取决于底物的性质和粒径。通过压缩试验和扫描电子显微镜对复合材料性能进行表征,并通过数值模拟对其压缩行为进行建模。将它们的性能相互比较,并与基准材料发泡聚苯乙烯(EPS)进行比较,EPS是一种用于建筑行业隔热的石油基泡沫材料。我们的分析发现,EPS的弹性模量为2.37±0.17兆帕,比火木层孔菌复合材料高4倍,而其抗压强度为0.09±0.003兆帕,与真菌复合材料的范围相当。然而,在比较在较高应变值下承受压缩力的能力时,真菌复合材料的表现优于EPS。基于大麻木片的复合材料在50%压缩时能够承受0.2兆帕的压缩力,油菜复合材料为0.3兆帕,而EPS仅为0.15兆帕。
本研究获得的数据表明,火木层孔菌构成了一个有前途的细胞工厂,可用于未来生产具有与EPS等合成泡沫类似机械性能的真菌复合材料。未来的工作将集中在通过优化底物性质、培养条件以及调节火木层孔菌的生长和细胞壁组成来设计材料特性,即那些在中观和微观层面上对复合材料性能有贡献的因素。