Suppr超能文献

用于单片3D集成柔性和可拉伸电子器件的低维纳米结构。

Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics.

作者信息

Hua Qilin, Shen Guozhen

机构信息

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.

Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China.

出版信息

Chem Soc Rev. 2024 Feb 5;53(3):1316-1353. doi: 10.1039/d3cs00918a.

Abstract

Flexible/stretchable electronics, which are characterized by their ultrathin design, lightweight structure, and excellent mechanical robustness and conformability, have garnered significant attention due to their unprecedented potential in healthcare, advanced robotics, and human-machine interface technologies. An increasing number of low-dimensional nanostructures with exceptional mechanical, electronic, and/or optical properties are being developed for flexible/stretchable electronics to fulfill the functional and application requirements of information sensing, processing, and interactive loops. Compared to the traditional single-layer format, which has a restricted design space, a monolithic three-dimensional (M3D) integrated device architecture offers greater flexibility and stretchability for electronic devices, achieving a high-level of integration to accommodate the state-of-the-art design targets, such as skin-comfort, miniaturization, and multi-functionality. Low-dimensional nanostructures possess small size, unique characteristics, flexible/elastic adaptability, and effective vertical stacking capability, boosting the advancement of M3D-integrated flexible/stretchable systems. In this review, we provide a summary of the typical low-dimensional nanostructures found in semiconductor, interconnect, and substrate materials, and discuss the design rules of flexible/stretchable devices for intelligent sensing and data processing. Furthermore, artificial sensory systems in 3D integration have been reviewed, highlighting the advancements in flexible/stretchable electronics that are deployed with high-density, energy-efficiency, and multi-functionalities. Finally, we discuss the technical challenges and advanced methodologies involved in the design and optimization of low-dimensional nanostructures, to achieve monolithic 3D-integrated flexible/stretchable multi-sensory systems.

摘要

柔性/可拉伸电子器件具有超薄设计、轻质结构以及出色的机械鲁棒性和顺应性等特点,因其在医疗保健、先进机器人技术和人机界面技术方面的巨大潜力而备受关注。为满足信息传感、处理和交互循环的功能及应用需求,越来越多具有优异机械、电子和/或光学性能的低维纳米结构被开发用于柔性/可拉伸电子器件。与设计空间受限的传统单层形式相比,单片三维(M3D)集成器件架构为电子器件提供了更大的灵活性和可拉伸性,实现了高水平集成以适应诸如皮肤舒适性、小型化和多功能性等先进设计目标。低维纳米结构具有尺寸小、独特特性、灵活/弹性适应性以及有效的垂直堆叠能力,推动了M3D集成柔性/可拉伸系统的发展。在本综述中,我们总结了半导体、互连和衬底材料中典型的低维纳米结构,并讨论了用于智能传感和数据处理的柔性/可拉伸器件的设计规则。此外,还综述了3D集成中的人工传感系统,突出了具有高密度、高能效和多功能的柔性/可拉伸电子器件的进展。最后,我们讨论了低维纳米结构设计和优化中涉及的技术挑战和先进方法,以实现单片3D集成柔性/可拉伸多传感系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验