Suppr超能文献

图像到物理肝脏配准稀疏数据挑战赛:使用通用数据集对当前最先进技术的比较。

The Image-to-Physical Liver Registration Sparse Data Challenge: comparison of state-of-the-art using a common dataset.

作者信息

Heiselman Jon S, Collins Jarrod A, Ringel Morgan J, Peter Kingham T, Jarnagin William R, Miga Michael I

机构信息

Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States.

Memorial Sloan Kettering Cancer Center, Department of Surgery, Hepatopancreatobiliary Unit, New York, New York, United States.

出版信息

J Med Imaging (Bellingham). 2024 Jan;11(1):015001. doi: 10.1117/1.JMI.11.1.015001. Epub 2024 Jan 8.

Abstract

PURPOSE

Computational methods for image-to-physical registration during surgical guidance frequently rely on sparse point clouds obtained over a limited region of the organ surface. However, soft tissue deformations complicate the ability to accurately infer anatomical alignments from sparse descriptors of the organ surface. The Image-to-Physical Liver Registration Sparse Data Challenge introduced at SPIE Medical Imaging 2019 seeks to characterize the performance of sparse data registration methods on a common dataset to benchmark and identify effective tactics and limitations that will continue to inform the evolution of image-to-physical registration algorithms.

APPROACH

Three rigid and five deformable registration methods were contributed to the challenge. The deformable approaches consisted of two deep learning and three biomechanical boundary condition reconstruction methods. These algorithms were compared on a common dataset of 112 registration scenarios derived from a tissue-mimicking phantom with 159 subsurface validation targets. Target registration errors (TRE) were evaluated under varying conditions of data extent, target location, and measurement noise. Jacobian determinants and strain magnitudes were compared to assess displacement field consistency.

RESULTS

Rigid registration algorithms produced significant differences in TRE ranging from to , depending on the choice of technique. Two biomechanical methods yielded TRE of and , which outperformed optimal rigid registration of targets. These methods demonstrated good performance under varying degrees of surface data coverage and across all anatomical segments of the liver. Deep learning methods exhibited TRE ranging from to but are likely to improve with continued development. TRE was weakly correlated among methods, with greatest agreement and field consistency observed among the biomechanical approaches.

CONCLUSIONS

The choice of registration algorithm significantly impacts registration accuracy and variability of deformation fields. Among current sparse data driven image-to-physical registration algorithms, biomechanical simulations that incorporate task-specific insight into boundary conditions seem to offer best performance.

摘要

目的

手术导航期间用于图像到物理配准的计算方法通常依赖于在器官表面有限区域上获得的稀疏点云。然而,软组织变形使从器官表面的稀疏描述符准确推断解剖对齐的能力变得复杂。2019年SPIE医学成像大会上推出的图像到物理肝脏配准稀疏数据挑战赛旨在表征稀疏数据配准方法在一个通用数据集上的性能,以对算法进行基准测试,并识别有效的策略及局限性,这些将继续为图像到物理配准算法的发展提供参考。

方法

三种刚体和五种可变形配准方法参与了此次挑战赛。可变形方法包括两种深度学习方法和三种生物力学边界条件重建方法。这些算法在一个由具有159个地下验证目标的组织模拟体模得出的包含112个配准场景的通用数据集上进行了比较。在数据范围、目标位置和测量噪声的不同条件下评估目标配准误差(TRE)。比较雅可比行列式和应变大小以评估位移场的一致性。

结果

刚体配准算法产生的TRE存在显著差异,范围从 到 ,这取决于技术的选择。两种生物力学方法产生的TRE分别为 和 ,优于目标的最佳刚体配准。这些方法在不同程度的表面数据覆盖下以及肝脏的所有解剖段中都表现出良好的性能。深度学习方法的TRE范围从 到 ,但可能会随着持续发展而改善。各方法之间的TRE相关性较弱,可以观察到生物力学方法之间的一致性和场一致性最高。

结论

配准算法的选择对配准精度和变形场的可变性有显著影响。在当前基于稀疏数据驱动的图像到物理配准算法中,将特定任务的见解纳入边界条件的生物力学模拟似乎提供了最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e16/10773576/77f9a0c26e36/JMI-011-015001-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验