Suppr超能文献

分析 SARS-CoV-2 基因组的进化模式。

Analysis of SARS-CoV-2 genome evolutionary patterns.

机构信息

Department of Biological Sciences and Engineering, Computational and Structural Biology Laboratory, Netaji Subhas University of Technology, Dwarka, New Delhi, India.

Division of Biotechnology, Computational and Structural Biology Laboratory, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India.

出版信息

Microbiol Spectr. 2024 Feb 6;12(2):e0265423. doi: 10.1128/spectrum.02654-23. Epub 2024 Jan 10.

Abstract

The spread of SARS-CoV-2 virus accompanied by public availability of abundant sequence data provides a window for the determination of viral evolutionary patterns. In this study, SARS-CoV-2 genome sequences were collected from seven countries in the period January 2020-December 2022. The sequences were classified into three phases, namely, pre-vaccination, post-vaccination, and recent period. Comparison was performed between these phases based on parameters like mutation rates, selection pressure (d/d ratio), and transition to transversion ratios (T/T). Similar comparisons were performed among SARS-CoV-2 variants. Statistical significance was tested using Graphpad unpaired -test. The analysis showed an increase in the percent genomic mutation rates post-vaccination and in recent periods across all countries from the pre-vaccination sequences. Mutation rates were highest in NSP3, S, N, and NSP12b before and increased further after vaccination. NSP4 showed the largest change in mutation rates after vaccination. The d/d ratios showed purifying selection that shifted toward neutral selection after vaccination. N, ORF8, ORF3a, and ORF10 were under highest positive selection before vaccination. Shift toward neutral selection was driven by E, NSP3, and ORF7a in the after vaccination set. In recent sequences, the largest d/d change was observed in E, NSP1, and NSP13. The T/T ratios decreased with time. C→U and G→U were the most frequent transitions and transversions. However, U→G was the most frequent transversion in recent period. The Omicron variant had the highest genomic mutation rates, while Delta showed the highest d/d ratio. Protein-wise d/d ratio was also seen to vary across the different variants.IMPORTANCETo the best of our knowledge, there exists no other large-scale study of the genomic and protein-wise mutation patterns during the time course of evolution in different countries. Analyzing the SARS-CoV-2 evolutionary patterns in view of the varying spatial, temporal, and biological signals is important for diagnostics, therapeutics, and pharmacovigilance of SARS-CoV-2.

摘要

新冠病毒 (SARS-CoV-2) 的传播伴随着大量序列数据的公开,为确定病毒的进化模式提供了一个窗口。在这项研究中,我们从 2020 年 1 月至 2022 年 12 月期间从七个国家收集了 SARS-CoV-2 基因组序列。这些序列被分为三个阶段,即疫苗接种前、疫苗接种后和近期。基于突变率、选择压力 (d/d 比) 和转换/颠换比 (T/T) 等参数,对这些阶段进行了比较。我们还在 SARS-CoV-2 变体之间进行了类似的比较。使用 Graphpad 非配对 t 检验测试了统计显著性。分析表明,所有国家的疫苗接种后和近期的全基因组突变率都比疫苗接种前有所增加。在疫苗接种前,NSP3、S、N 和 NSP12b 的突变率最高,接种后进一步增加。NSP4 在接种后突变率变化最大。d/d 比显示出在接种疫苗后从净化选择向中性选择的转变。在接种疫苗前,N、ORF8、ORF3a 和 ORF10 受到最强的阳性选择。接种后,E、NSP3 和 ORF7a 驱动向中性选择的转变。在最近的序列中,E、NSP1 和 NSP13 的 d/d 变化最大。T/T 比随时间下降。C→U 和 G→U 是最常见的转换和颠换。然而,最近时期 U→G 是最常见的颠换。奥密克戎变体具有最高的基因组突变率,而德尔塔变体具有最高的 d/d 比。在蛋白质水平上,d/d 比也因不同变体而异。

重要性

据我们所知,目前还没有其他关于不同国家在进化过程中基因组和蛋白质突变模式的大规模研究。从不同的空间、时间和生物学信号的角度分析 SARS-CoV-2 的进化模式,对于 SARS-CoV-2 的诊断、治疗和药物警戒非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bfc/10846092/6def9714c07a/spectrum.02654-23.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验