IEEE J Biomed Health Inform. 2024 Mar;28(3):1341-1352. doi: 10.1109/JBHI.2024.3352081. Epub 2024 Mar 6.
Accurate quantification of microsleep (MS) in drivers is crucial for preventing real-time accidents. We propose one-to-one correlation between events of high-fidelity driving simulator (DS) and corresponding brain patterns, unlike previous studies focusing general impact of MS on driving performance. Fifty professional drivers with obstructive sleep apnea (OSA) participated in a 50-minute driving simulation, wearing six-channel Electroencephalography (EEG) electrodes. 970 out-of-road OOR (microsleep) events (wheel and boundary contact ≥1 s), and 1020 on-road OR (wakefulness) events (wheel and boundary disconnection ≥1 s), were recorded. Power spectrum density, computed using discrete wavelet transform, analyzed power in different frequency bands and theta/alpha ratios were calculated for each event. We classified OOR (microsleep) events with higher theta/alpha ratio compared to neighboring OR (wakefulness) episodes as true MS and those with lower ratio as false MS. Comparative analysis, focusing on frontal brain, matched 791 of 970 OOR (microsleep) events with true MS episodes, outperforming other brain regions, and suggested that some unmatched instances were due to driving performance, not sleepiness. Combining frontal channels F3 and F4 yielded increased sensitivity in detecting MS, achieving 83.7% combined mean identification rate (CMIR), surpassing individual channel's MIR, highlighting potential for further improvement with additional frontal channels. We quantified MS duration, with 95% of total episodes lasting between 1 to 15 seconds, and pioneered a robust correlation (r = 0.8913, p<0.001) between maximum drowsiness level and MS density. Validating simulator's signals with EEG patterns by establishing a direct correlation improves reliability of MS identification for assessing fitness-to-drive of OSA-afflicted adults.
准确量化驾驶员的微睡眠(MS)对于预防实时事故至关重要。与之前的研究侧重于 MS 对驾驶性能的一般影响不同,我们提出了高保真度驾驶模拟器(DS)事件与相应脑模式之间的一一对应关系。50 名患有阻塞性睡眠呼吸暂停(OSA)的职业驾驶员参与了 50 分钟的驾驶模拟,佩戴了六通道脑电图(EEG)电极。记录了 970 次偏离道路的 OOR(微睡眠)事件(车轮和边界接触≥1 秒)和 1020 次在道路上的 OR(清醒)事件(车轮和边界断开≥1 秒)。使用离散小波变换计算功率谱密度,分析不同频带的功率,并计算每个事件的θ/α 比值。我们将 OOR(微睡眠)事件中与相邻 OR(清醒)事件相比θ/α 比值较高的事件分类为真正的 MS,而比值较低的事件分类为假 MS。重点关注前额脑的对比分析,将 970 次 OOR(微睡眠)事件中的 791 次与真正的 MS 事件相匹配,表现优于其他脑区,表明一些不匹配的情况是由于驾驶表现而不是嗜睡。结合前额通道 F3 和 F4 提高了检测 MS 的灵敏度,达到了 83.7%的联合平均识别率(CMIR),超过了单个通道的 MIR,这表明随着额外的前额通道,还有进一步提高的潜力。我们量化了 MS 的持续时间,95%的总发作持续时间在 1 到 15 秒之间,并且开创性地建立了最大困倦程度与 MS 密度之间的稳健相关性(r=0.8913,p<0.001)。通过建立直接相关性,用 EEG 模式验证模拟器信号,提高了评估 OSA 成人驾驶能力的 MS 识别的可靠性。