Suppr超能文献

基于视觉的信号与脑电图模式在增强阻塞性睡眠呼吸暂停患者驾驶时嗜睡检测中的关联

Association of Visual-Based Signals with Electroencephalography Patterns in Enhancing the Drowsiness Detection in Drivers with Obstructive Sleep Apnea.

作者信息

Minhas Riaz, Peker Nur Yasin, Hakkoz Mustafa Abdullah, Arbatli Semih, Celik Yeliz, Erdem Cigdem Eroglu, Semiz Beren, Peker Yuksel

机构信息

College of Engineering, Koc University, Istanbul 34450, Turkey.

Department of Mechatronics Engineering, Sakarya University of Applied Sciences, Sakarya 54050, Turkey.

出版信息

Sensors (Basel). 2024 Apr 19;24(8):2625. doi: 10.3390/s24082625.

Abstract

Individuals with obstructive sleep apnea (OSA) face increased accident risks due to excessive daytime sleepiness. PERCLOS, a recognized drowsiness detection method, encounters challenges from image quality, eyewear interference, and lighting variations, impacting its performance, and requiring validation through physiological signals. We propose visual-based scoring using adaptive thresholding for eye aspect ratio with OpenCV for face detection and Dlib for eye detection from video recordings. This technique identified 453 drowsiness (PERCLOS ≥ 0.3 || CLOSDUR ≥ 2 s) and 474 wakefulness episodes (PERCLOS < 0.3 and CLOSDUR < 2 s) among fifty OSA drivers in a 50 min driving simulation while wearing six-channel EEG electrodes. Applying discrete wavelet transform, we derived ten EEG features, correlated them with visual-based episodes using various criteria, and assessed the sensitivity of brain regions and individual EEG channels. Among these features, theta-alpha-ratio exhibited robust mapping (94.7%) with visual-based scoring, followed by delta-alpha-ratio (87.2%) and delta-theta-ratio (86.7%). Frontal area (86.4%) and channel F4 (75.4%) aligned most episodes with theta-alpha-ratio, while frontal, and occipital regions, particularly channels F4 and O2, displayed superior alignment across multiple features. Adding frontal or occipital channels could correlate all episodes with EEG patterns, reducing hardware needs. Our work could potentially enhance real-time drowsiness detection reliability and assess fitness to drive in OSA drivers.

摘要

患有阻塞性睡眠呼吸暂停(OSA)的个体由于白天过度嗜睡而面临更高的事故风险。PERCLOS是一种公认的嗜睡检测方法,但它面临着图像质量、眼镜干扰和光照变化等挑战,影响其性能,因此需要通过生理信号进行验证。我们提出了基于视觉的评分方法,使用自适应阈值处理眼睛长宽比,利用OpenCV进行面部检测,Dlib进行视频记录中的眼睛检测。在50分钟的驾驶模拟中,该技术在50名佩戴六通道脑电图电极的OSA驾驶员中识别出453次嗜睡发作(PERCLOS≥0.3 || CLOSDUR≥2秒)和474次清醒发作(PERCLOS<0.3且CLOSDUR<2秒)。应用离散小波变换,我们提取了10个脑电图特征,使用各种标准将它们与基于视觉的发作进行关联,并评估了脑区和单个脑电图通道的敏感性。在这些特征中,θ-α比率与基于视觉的评分表现出稳健的映射关系(94.7%),其次是δ-α比率(87.2%)和δ-θ比率(86.7%)。额叶区域(86.4%)和通道F4(75.4%)与θ-α比率的发作对齐最多,而额叶和枕叶区域,特别是通道F4和O2,在多个特征上显示出更好的对齐。添加额叶或枕叶通道可以使所有发作与脑电图模式相关联,减少硬件需求。我们的工作可能会提高实时嗜睡检测的可靠性,并评估OSA驾驶员的驾驶适宜性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/401f/11055081/13bc461eab8a/sensors-24-02625-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验