Suppr超能文献

使用人工神经网络和多元线性回归预测钙质土壤的饱和和近饱和水力传导率。

Predicting saturated and near-saturated hydraulic conductivity using artificial neural networks and multiple linear regression in calcareous soils.

机构信息

Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran.

Department of Biosystems Engineering, College of Agriculture, Shiraz University, Shiraz, Iran.

出版信息

PLoS One. 2024 Jan 10;19(1):e0296933. doi: 10.1371/journal.pone.0296933. eCollection 2024.

Abstract

Hydraulic conductivity (Kψ) is one of the most important soil properties that influences water and chemical movement within the soil and is a vital factor in various management practices, like drainage, irrigation, erosion control, and flood protection. Therefore, it is an essential component in soil monitoring and managerial practices. The importance of Kψ in soil-water relationship, difficulties for its measurement in the field, and its high variability led us to evaluate the potential of stepwise multiple linear regression (SMLR), and multilayer perceptron (MLPNNs) and radial-basis function (RBFNNs) neural networks approaches to predict Kψ at tensions of 15, 10, 5, and 0 cm (K15, K10, K5, and K0, respectively) using easily measurable attributes in calcareous soils. A total of 102 intact (by stainless steel rings) and composite (using spade from 0-20 cm depth) soil samples were collected from different land uses of Fars Province, Iran. The common physico-chemical attributes were determined by the common standard laboratory approaches. Additionally, the mentioned hydraulic attributes were measured using a tension-disc infiltrometer (with a 10 cm radius) in situ. Results revealed that the most of studied soil structure-related parameters (soil organic matter, soluble sodium, sodium adsorption ratio, mean weight diameter of aggregates, pH, and bulk density) are more correlated with K5 and K0 than particle-size distribution-related parameters (sand, silt, and standard deviation and geometric mean diameter of particles size). For K15 and K10, the opposite results were obtained. The applied approaches predicted K15, K10, K5, and K0 with determination coefficient of validation data (R2val) of 0.52 to 0.63 for SMLR; 0.71 to 0.82 for MLPNNs; and 0.58 to 0.78 for RBFNNs. In general, the capability of the applied methods for predicting Kψ at all the applied tensions was ranked as MLPNNs > RBFNNs > SMLR. Although the SMLR method provided easy to use pedotransfer functions for predicting Kψ in calcareous soils, the present study suggests using the MLPNNs approach due to its high capability for generating accurate predictions.

摘要

水力传导率(Kψ)是影响土壤中水分和化学物质运移的最重要土壤特性之一,也是排水、灌溉、侵蚀控制和洪水保护等各种管理实践中的重要因素。因此,它是土壤监测和管理实践中的重要组成部分。由于 Kψ 在土壤-水关系中的重要性、在田间测量的困难以及其高度可变性,我们评估了逐步多元线性回归(SMLR)、多层感知器(MLPNN)和径向基函数(RBFNN)神经网络方法在预测钙质土壤中 15、10、5 和 0 厘米张力下的 Kψ 的潜力(分别为 K15、K10、K5 和 K0),使用易于测量的属性。总共从伊朗法尔斯省的不同土地利用中采集了 102 个完整(用不锈钢环)和复合(用铲子从 0-20 厘米深)土壤样本。常见的物理化学属性通过常用的标准实验室方法确定。此外,还使用张力盘入渗计(半径为 10 厘米)原位测量了所述水力属性。结果表明,与粒径分布相关的参数(砂、粉土和粒径的标准偏差和几何平均值)相比,研究的大多数与土壤结构相关的参数(土壤有机质、可溶性钠、钠吸附比、团聚体的平均重量直径、pH 值和体密度)与 K5 和 K0 的相关性更高。对于 K15 和 K10,得到了相反的结果。应用方法分别以 0.52 至 0.63 的验证数据确定系数(R2val)预测 K15、K10、K5 和 K0;对于 MLPNNs 为 0.71 至 0.82;对于 RBFNNs 为 0.58 至 0.78。总体而言,应用方法在所有应用张力下预测 Kψ 的能力排序为 MLPNNs > RBFNNs > SMLR。尽管 SMLR 方法提供了易于使用的传递函数来预测钙质土壤中的 Kψ,但本研究建议使用 MLPNN 方法,因为它具有生成准确预测的高能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6326/10781043/e6bed0b7fdee/pone.0296933.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验