Mendes Francisco, Mascarenhas Miguel, Ribeiro Tiago, Afonso João, Cardoso Pedro, Martins Miguel, Cardoso Hélder, Andrade Patrícia, Ferreira João P S, Mascarenhas Saraiva Miguel, Macedo Guilherme
Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal.
WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal.
Cancers (Basel). 2024 Jan 1;16(1):208. doi: 10.3390/cancers16010208.
Device-assisted enteroscopy (DAE) is capable of evaluating the entire gastrointestinal tract, identifying multiple lesions. Nevertheless, DAE's diagnostic yield is suboptimal. Convolutional neural networks (CNN) are multi-layer architecture artificial intelligence models suitable for image analysis, but there is a lack of studies about their application in DAE. Our group aimed to develop a multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. In total, 338 exams performed in two specialized centers were retrospectively evaluated, with 152 single-balloon enteroscopies (Fujifilm®, Porto, Portugal), 172 double-balloon enteroscopies (Olympus, Porto, Portugal) and 14 motorized spiral enteroscopies (Olympus, Porto, Portugal); then, 40,655 images were divided in a training dataset (90% of the images, = 36,599) and testing dataset (10% of the images, = 4066) used to evaluate the model. The CNN's output was compared to an expert consensus classification. The model was evaluated by its sensitivity, specificity, positive (PPV) and negative predictive values (NPV), accuracy and area under the precision recall curve (AUC-PR). The CNN had an 88.9% sensitivity, 98.9% specificity, 95.8% PPV, 97.1% NPV, 96.8% accuracy and an AUC-PR of 0.97. Our group developed the first multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. The development of accurate deep learning models is of utmost importance for increasing the diagnostic yield of DAE-based panendoscopy.
设备辅助小肠镜检查(DAE)能够评估整个胃肠道,识别多个病变。然而,DAE的诊断率并不理想。卷积神经网络(CNN)是适用于图像分析的多层架构人工智能模型,但缺乏关于其在DAE中应用的研究。我们团队旨在开发一种多设备CNN,用于在DAE期间对临床相关病变进行全内镜检测。我们回顾性评估了在两个专业中心进行的338例检查,其中包括152例单气囊小肠镜检查(富士胶片公司,葡萄牙波尔图)、172例双气囊小肠镜检查(奥林巴斯,葡萄牙波尔图)和14例电动螺旋小肠镜检查(奥林巴斯,葡萄牙波尔图);然后,将40655张图像分为训练数据集(占图像的90%,n = 36599)和测试数据集(占图像的10%,n = 4066),用于评估模型。将CNN的输出与专家共识分类进行比较。通过模型的敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)、准确性以及精确召回率曲线下面积(AUC-PR)对模型进行评估。该CNN的敏感性为88.9%,特异性为98.9%,PPV为95.8%,NPV为97.1%,准确性为96.8%,AUC-PR为0.97。我们团队开发了首个用于在DAE期间对临床相关病变进行全内镜检测的多设备CNN。开发准确的深度学习模型对于提高基于DAE的全内镜检查的诊断率至关重要。
Medicina (Kaunas). 2023-1-15
Medicina (Kaunas). 2021-12-18
Clin Transl Gastroenterol. 2023-10-1
J Clin Med. 2024-7-4
Clin Transl Gastroenterol. 2024-11-1
Diagnostics (Basel). 2024-1-29
NPJ Digit Med. 2023-8-14
Neural Netw. 2023-8
Medicina (Kaunas). 2023-4-18
Bioengineering (Basel). 2023-3-24
Medicina (Kaunas). 2023-1-15