文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能与全内镜检查——多品牌设备辅助肠镜检查中临床相关病变的自动检测

Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy.

作者信息

Mendes Francisco, Mascarenhas Miguel, Ribeiro Tiago, Afonso João, Cardoso Pedro, Martins Miguel, Cardoso Hélder, Andrade Patrícia, Ferreira João P S, Mascarenhas Saraiva Miguel, Macedo Guilherme

机构信息

Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal.

WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal.

出版信息

Cancers (Basel). 2024 Jan 1;16(1):208. doi: 10.3390/cancers16010208.


DOI:10.3390/cancers16010208
PMID:38201634
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10778030/
Abstract

Device-assisted enteroscopy (DAE) is capable of evaluating the entire gastrointestinal tract, identifying multiple lesions. Nevertheless, DAE's diagnostic yield is suboptimal. Convolutional neural networks (CNN) are multi-layer architecture artificial intelligence models suitable for image analysis, but there is a lack of studies about their application in DAE. Our group aimed to develop a multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. In total, 338 exams performed in two specialized centers were retrospectively evaluated, with 152 single-balloon enteroscopies (Fujifilm®, Porto, Portugal), 172 double-balloon enteroscopies (Olympus, Porto, Portugal) and 14 motorized spiral enteroscopies (Olympus, Porto, Portugal); then, 40,655 images were divided in a training dataset (90% of the images, = 36,599) and testing dataset (10% of the images, = 4066) used to evaluate the model. The CNN's output was compared to an expert consensus classification. The model was evaluated by its sensitivity, specificity, positive (PPV) and negative predictive values (NPV), accuracy and area under the precision recall curve (AUC-PR). The CNN had an 88.9% sensitivity, 98.9% specificity, 95.8% PPV, 97.1% NPV, 96.8% accuracy and an AUC-PR of 0.97. Our group developed the first multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. The development of accurate deep learning models is of utmost importance for increasing the diagnostic yield of DAE-based panendoscopy.

摘要

设备辅助小肠镜检查(DAE)能够评估整个胃肠道,识别多个病变。然而,DAE的诊断率并不理想。卷积神经网络(CNN)是适用于图像分析的多层架构人工智能模型,但缺乏关于其在DAE中应用的研究。我们团队旨在开发一种多设备CNN,用于在DAE期间对临床相关病变进行全内镜检测。我们回顾性评估了在两个专业中心进行的338例检查,其中包括152例单气囊小肠镜检查(富士胶片公司,葡萄牙波尔图)、172例双气囊小肠镜检查(奥林巴斯,葡萄牙波尔图)和14例电动螺旋小肠镜检查(奥林巴斯,葡萄牙波尔图);然后,将40655张图像分为训练数据集(占图像的90%,n = 36599)和测试数据集(占图像的10%,n = 4066),用于评估模型。将CNN的输出与专家共识分类进行比较。通过模型的敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)、准确性以及精确召回率曲线下面积(AUC-PR)对模型进行评估。该CNN的敏感性为88.9%,特异性为98.9%,PPV为95.8%,NPV为97.1%,准确性为96.8%,AUC-PR为0.97。我们团队开发了首个用于在DAE期间对临床相关病变进行全内镜检测的多设备CNN。开发准确的深度学习模型对于提高基于DAE的全内镜检查的诊断率至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e505/10778030/ee569de6810b/cancers-16-00208-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e505/10778030/99c6a82cba50/cancers-16-00208-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e505/10778030/8698e1e8d479/cancers-16-00208-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e505/10778030/ee569de6810b/cancers-16-00208-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e505/10778030/99c6a82cba50/cancers-16-00208-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e505/10778030/8698e1e8d479/cancers-16-00208-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e505/10778030/ee569de6810b/cancers-16-00208-g003.jpg

相似文献

[1]
Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy.

Cancers (Basel). 2024-1-1

[2]
Deep-Learning and Device-Assisted Enteroscopy: Automatic Panendoscopic Detection of Ulcers and Erosions.

Medicina (Kaunas). 2023-1-15

[3]
Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia.

Medicina (Kaunas). 2021-12-18

[4]
Deep learning and capsule endoscopy: Automatic multi-brand and multi-device panendoscopic detection of vascular lesions.

Endosc Int Open. 2024-4-23

[5]
Artificial Intelligence and Device-Assisted Enteroscopy: Automatic Detection of Enteric Protruding Lesions Using a Convolutional Neural Network.

Clin Transl Gastroenterol. 2022-8-1

[6]
Use, Yield, and Risk of Device-assisted Enteroscopy in the United States: Results From a Large Retrospective Multicenter Cohort.

J Clin Gastroenterol. 2021-10-1

[7]
Design of a Convolutional Neural Network as a Deep Learning Tool for the Automatic Classification of Small-Bowel Cleansing in Capsule Endoscopy.

Medicina (Kaunas). 2023-4-21

[8]
Deep Learning and Minimally Invasive Endoscopy: Automatic Classification of Pleomorphic Gastric Lesions in Capsule Endoscopy.

Clin Transl Gastroenterol. 2023-10-1

[9]
Role of Device-Assisted Enteroscopy in Crohn's Disease.

J Clin Med. 2024-7-4

[10]
Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network.

BMJ Open Gastroenterol. 2021-9

引用本文的文献

[1]
Deep Learning and Automatic Differentiation of Pancreatic Lesions in Endoscopic Ultrasound: A Transatlantic Study.

Clin Transl Gastroenterol. 2024-11-1

[2]
From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy?

Diagnostics (Basel). 2024-1-29

本文引用的文献

[1]
Impact of primary to secondary care data sharing on care quality in NHS England hospitals.

NPJ Digit Med. 2023-8-14

[2]
Development and implementation of an interoperability tool across state public health agency's disease surveillance and immunization information systems.

JAMIA Open. 2023-8-3

[3]
First Generation of a Modular Interoperable Closed-Loop System for Automated Insulin Delivery in Patients With Type 1 Diabetes: Lessons From Trials and Real-Life Data.

J Diabetes Sci Technol. 2023-11

[4]
A multi-modal deep neural network for multi-class liver cancer diagnosis.

Neural Netw. 2023-8

[5]
Using a deep learning neural network for the identification of malignant cells in effusion cytology material.

Cytopathology. 2023-9

[6]
Design of a Convolutional Neural Network as a Deep Learning Tool for the Automatic Classification of Small-Bowel Cleansing in Capsule Endoscopy.

Medicina (Kaunas). 2023-4-21

[7]
The Promise of Artificial Intelligence in Digestive Healthcare and the Bioethics Challenges It Presents.

Medicina (Kaunas). 2023-4-18

[8]
A Review of the Technology, Training, and Assessment Methods for the First Real-Time AI-Enhanced Medical Device for Endoscopy.

Bioengineering (Basel). 2023-3-24

[9]
Convolutional neural network-based segmentation network applied to image recognition of angiodysplasias lesion under capsule endoscopy.

World J Gastroenterol. 2023-2-7

[10]
Deep-Learning and Device-Assisted Enteroscopy: Automatic Panendoscopic Detection of Ulcers and Erosions.

Medicina (Kaunas). 2023-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索