文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多模态深度神经网络在肝癌多分类诊断中的应用

A multi-modal deep neural network for multi-class liver cancer diagnosis.

机构信息

Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.

College of Medicine and Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.

出版信息

Neural Netw. 2023 Aug;165:553-561. doi: 10.1016/j.neunet.2023.06.013. Epub 2023 Jun 12.


DOI:10.1016/j.neunet.2023.06.013
PMID:37354807
Abstract

Liver disease is a potentially asymptomatic clinical entity that may progress to patient death. This study proposes a multi-modal deep neural network for multi-class malignant liver diagnosis. In parallel with the portal venous computed tomography (CT) scans, pathology data is utilized to prognosticate primary liver cancer variants and metastasis. The processed CT scans are fed to the deep dilated convolution neural network to explore salient features. The residual connections are further added to address vanishing gradient problems. Correspondingly, five pathological features are learned using a wide and deep network that gives a benefit of memorization with generalization. The down-scaled hierarchical features from CT scan and pathology data are concatenated to pass through fully connected layers for classification between liver cancer variants. In addition, the transfer learning of pre-trained deep dilated convolution layers assists in handling insufficient and imbalanced dataset issues. The fine-tuned network can predict three-class liver cancer variants with an average accuracy of 96.06% and an Area Under Curve (AUC) of 0.832. To the best of our knowledge, this is the first study to classify liver cancer variants by integrating pathology and image data, hence following the medical perspective of malignant liver diagnosis. The comparative analysis on the benchmark dataset shows that the proposed multi-modal neural network outperformed most of the liver diagnostic studies and is comparable to others.

摘要

肝脏疾病是一种潜在的无症状临床病症,可能导致患者死亡。本研究提出了一种用于多类恶性肝脏诊断的多模态深度神经网络。与门静脉 CT 扫描并行,利用病理学数据对原发性肝癌变体和转移进行预后分析。处理后的 CT 扫描被输入深度扩张卷积神经网络以探索显著特征。此外,还添加了残差连接来解决梯度消失问题。相应地,使用宽深网络学习五个病理学特征,这有利于记忆和泛化。从 CT 扫描和病理学数据中提取的分层特征被级联起来,通过全连接层进行肝癌变体之间的分类。此外,预训练的深度扩张卷积层的迁移学习有助于处理数据量不足和不平衡的问题。微调后的网络可以预测三种肝癌变体,平均准确率为 96.06%,AUC 为 0.832。据我们所知,这是首次通过整合病理和图像数据对肝癌变体进行分类的研究,因此遵循了恶性肝脏诊断的医学观点。在基准数据集上的对比分析表明,所提出的多模态神经网络在大多数肝脏诊断研究中表现出色,与其他研究相当。

相似文献

[1]
A multi-modal deep neural network for multi-class liver cancer diagnosis.

Neural Netw. 2023-8

[2]
Development and validation of a meta-learning-based multi-modal deep learning algorithm for detection of peritoneal metastasis.

Int J Comput Assist Radiol Surg. 2022-10

[3]
An attention-based deep learning for acute lymphoblastic leukemia classification.

Sci Rep. 2024-7-29

[4]
DeepHistoNet: A robust deep-learning model for the classification of hepatocellular, lung, and colon carcinoma.

Microsc Res Tech. 2024-2

[5]
Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.

Asian Pac J Cancer Prev. 2019-11-1

[6]
Cross-institutional outcome prediction for head and neck cancer patients using self-attention neural networks.

Sci Rep. 2022-2-24

[7]
Computer-aided diagnosis of prostate cancer based on deep neural networks from multi-parametric magnetic resonance imaging.

Front Physiol. 2022-8-29

[8]
A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks.

J Med Syst. 2019-12-18

[9]
Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.

Eur Radiol. 2019-4-23

[10]
Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.

Eur Radiol. 2019-5-15

引用本文的文献

[1]
Medical laboratory data-based models: opportunities, obstacles, and solutions.

J Transl Med. 2025-7-24

[2]
Comprehensive multi-phase 3D contrast-enhanced CT imaging for primary liver cancer.

Sci Data. 2025-5-10

[3]
Multimodal deep learning approaches for precision oncology: a comprehensive review.

Brief Bioinform. 2024-11-22

[4]
A related convolutional neural network for cancer diagnosis using microRNA data classification.

Healthc Technol Lett. 2024-11-22

[5]
The future of multimodal artificial intelligence models for integrating imaging and clinical metadata: a narrative review.

Diagn Interv Radiol. 2024-10-1

[6]
Artificial intelligence techniques in liver cancer.

Front Oncol. 2024-9-3

[7]
From research to reality: The role of artificial intelligence applications in HCC care.

Clin Liver Dis (Hoboken). 2024-4-2

[8]
Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy.

Cancers (Basel). 2024-1-1

[9]
Deep Learning Methods in Medical Image-Based Hepatocellular Carcinoma Diagnosis: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2023-12-3

[10]
invMap: a sensitive mapping tool for long noisy reads with inversion structural variants.

Bioinformatics. 2023-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索